{"title":"偶数一般特殊正交群的伽罗瓦表征","authors":"Arno Kret, Sug Woo Shin","doi":"10.1017/s1474748023000427","DOIUrl":null,"url":null,"abstract":"<p>We prove the existence of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212153014787-0742:S1474748023000427:S1474748023000427_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm {GSpin}_{2n}$</span></span></img></span></span>-valued Galois representations corresponding to cohomological cuspidal automorphic representations of certain quasi-split forms of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212153014787-0742:S1474748023000427:S1474748023000427_inline2.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathrm {GSO}}_{2n}$</span></span></img></span></span> under the local hypotheses that there is a Steinberg component and that the archimedean parameters are regular for the standard representation. This is based on the cohomology of Shimura varieties of abelian type, of type <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212153014787-0742:S1474748023000427:S1474748023000427_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$D^{\\mathbb {H}}$</span></span></img></span></span>, arising from forms of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212153014787-0742:S1474748023000427:S1474748023000427_inline4.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathrm {GSO}}_{2n}$</span></span></img></span></span>. As an application, under similar hypotheses, we compute automorphic multiplicities, prove meromorphic continuation of (half) spin <span>L</span>-functions and improve on the construction of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212153014787-0742:S1474748023000427:S1474748023000427_inline5.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathrm {SO}}_{2n}$</span></span></img></span></span>-valued Galois representations by removing the outer automorphism ambiguity.</p>","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":"23 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GALOIS REPRESENTATIONS FOR EVEN GENERAL SPECIAL ORTHOGONAL GROUPS\",\"authors\":\"Arno Kret, Sug Woo Shin\",\"doi\":\"10.1017/s1474748023000427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove the existence of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212153014787-0742:S1474748023000427:S1474748023000427_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathrm {GSpin}_{2n}$</span></span></img></span></span>-valued Galois representations corresponding to cohomological cuspidal automorphic representations of certain quasi-split forms of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212153014787-0742:S1474748023000427:S1474748023000427_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathrm {GSO}}_{2n}$</span></span></img></span></span> under the local hypotheses that there is a Steinberg component and that the archimedean parameters are regular for the standard representation. This is based on the cohomology of Shimura varieties of abelian type, of type <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212153014787-0742:S1474748023000427:S1474748023000427_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$D^{\\\\mathbb {H}}$</span></span></img></span></span>, arising from forms of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212153014787-0742:S1474748023000427:S1474748023000427_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathrm {GSO}}_{2n}$</span></span></img></span></span>. As an application, under similar hypotheses, we compute automorphic multiplicities, prove meromorphic continuation of (half) spin <span>L</span>-functions and improve on the construction of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212153014787-0742:S1474748023000427:S1474748023000427_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathrm {SO}}_{2n}$</span></span></img></span></span>-valued Galois representations by removing the outer automorphism ambiguity.</p>\",\"PeriodicalId\":50002,\"journal\":{\"name\":\"Journal of the Institute of Mathematics of Jussieu\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Institute of Mathematics of Jussieu\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s1474748023000427\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Institute of Mathematics of Jussieu","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1474748023000427","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
GALOIS REPRESENTATIONS FOR EVEN GENERAL SPECIAL ORTHOGONAL GROUPS
We prove the existence of $\mathrm {GSpin}_{2n}$-valued Galois representations corresponding to cohomological cuspidal automorphic representations of certain quasi-split forms of ${\mathrm {GSO}}_{2n}$ under the local hypotheses that there is a Steinberg component and that the archimedean parameters are regular for the standard representation. This is based on the cohomology of Shimura varieties of abelian type, of type $D^{\mathbb {H}}$, arising from forms of ${\mathrm {GSO}}_{2n}$. As an application, under similar hypotheses, we compute automorphic multiplicities, prove meromorphic continuation of (half) spin L-functions and improve on the construction of ${\mathrm {SO}}_{2n}$-valued Galois representations by removing the outer automorphism ambiguity.
期刊介绍:
The Journal of the Institute of Mathematics of Jussieu publishes original research papers in any branch of pure mathematics; papers in logic and applied mathematics will also be considered, particularly when they have direct connections with pure mathematics. Its policy is to feature a wide variety of research areas and it welcomes the submission of papers from all parts of the world. Selection for publication is on the basis of reports from specialist referees commissioned by the Editors.