偶数一般特殊正交群的伽罗瓦表征

IF 1.1 2区 数学 Q1 MATHEMATICS
Arno Kret, Sug Woo Shin
{"title":"偶数一般特殊正交群的伽罗瓦表征","authors":"Arno Kret, Sug Woo Shin","doi":"10.1017/s1474748023000427","DOIUrl":null,"url":null,"abstract":"<p>We prove the existence of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212153014787-0742:S1474748023000427:S1474748023000427_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm {GSpin}_{2n}$</span></span></img></span></span>-valued Galois representations corresponding to cohomological cuspidal automorphic representations of certain quasi-split forms of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212153014787-0742:S1474748023000427:S1474748023000427_inline2.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathrm {GSO}}_{2n}$</span></span></img></span></span> under the local hypotheses that there is a Steinberg component and that the archimedean parameters are regular for the standard representation. This is based on the cohomology of Shimura varieties of abelian type, of type <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212153014787-0742:S1474748023000427:S1474748023000427_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$D^{\\mathbb {H}}$</span></span></img></span></span>, arising from forms of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212153014787-0742:S1474748023000427:S1474748023000427_inline4.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathrm {GSO}}_{2n}$</span></span></img></span></span>. As an application, under similar hypotheses, we compute automorphic multiplicities, prove meromorphic continuation of (half) spin <span>L</span>-functions and improve on the construction of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212153014787-0742:S1474748023000427:S1474748023000427_inline5.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathrm {SO}}_{2n}$</span></span></img></span></span>-valued Galois representations by removing the outer automorphism ambiguity.</p>","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":"23 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GALOIS REPRESENTATIONS FOR EVEN GENERAL SPECIAL ORTHOGONAL GROUPS\",\"authors\":\"Arno Kret, Sug Woo Shin\",\"doi\":\"10.1017/s1474748023000427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove the existence of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212153014787-0742:S1474748023000427:S1474748023000427_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathrm {GSpin}_{2n}$</span></span></img></span></span>-valued Galois representations corresponding to cohomological cuspidal automorphic representations of certain quasi-split forms of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212153014787-0742:S1474748023000427:S1474748023000427_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathrm {GSO}}_{2n}$</span></span></img></span></span> under the local hypotheses that there is a Steinberg component and that the archimedean parameters are regular for the standard representation. This is based on the cohomology of Shimura varieties of abelian type, of type <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212153014787-0742:S1474748023000427:S1474748023000427_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$D^{\\\\mathbb {H}}$</span></span></img></span></span>, arising from forms of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212153014787-0742:S1474748023000427:S1474748023000427_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathrm {GSO}}_{2n}$</span></span></img></span></span>. As an application, under similar hypotheses, we compute automorphic multiplicities, prove meromorphic continuation of (half) spin <span>L</span>-functions and improve on the construction of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212153014787-0742:S1474748023000427:S1474748023000427_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathrm {SO}}_{2n}$</span></span></img></span></span>-valued Galois representations by removing the outer automorphism ambiguity.</p>\",\"PeriodicalId\":50002,\"journal\":{\"name\":\"Journal of the Institute of Mathematics of Jussieu\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Institute of Mathematics of Jussieu\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s1474748023000427\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Institute of Mathematics of Jussieu","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1474748023000427","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了在存在斯坦伯格分量和阿基米德参数对标准表示来说是正则的局部假设下,与 ${\mathrm {GSO}}_{2n}$ 的某些准分裂形式的同调骤然自形表示相对应的 $\mathrm {GSpin}_{2n}$ 值伽罗瓦表示的存在性。这是基于由 ${\mathrm {GSO}}_{2n}$ 形式产生的无性型、类型为 $D^{mathbb {H}}$ 的 Shimura varieties 的同调。作为应用,在类似的假设条件下,我们计算了自形乘数,证明了(半)自旋 L 函数的分形延续,并通过消除外自形模糊性改进了 ${mathrm {SO}}_{2n}$ 值伽罗瓦表示的构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GALOIS REPRESENTATIONS FOR EVEN GENERAL SPECIAL ORTHOGONAL GROUPS

We prove the existence of $\mathrm {GSpin}_{2n}$-valued Galois representations corresponding to cohomological cuspidal automorphic representations of certain quasi-split forms of ${\mathrm {GSO}}_{2n}$ under the local hypotheses that there is a Steinberg component and that the archimedean parameters are regular for the standard representation. This is based on the cohomology of Shimura varieties of abelian type, of type $D^{\mathbb {H}}$, arising from forms of ${\mathrm {GSO}}_{2n}$. As an application, under similar hypotheses, we compute automorphic multiplicities, prove meromorphic continuation of (half) spin L-functions and improve on the construction of ${\mathrm {SO}}_{2n}$-valued Galois representations by removing the outer automorphism ambiguity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
54
审稿时长
>12 weeks
期刊介绍: The Journal of the Institute of Mathematics of Jussieu publishes original research papers in any branch of pure mathematics; papers in logic and applied mathematics will also be considered, particularly when they have direct connections with pure mathematics. Its policy is to feature a wide variety of research areas and it welcomes the submission of papers from all parts of the world. Selection for publication is on the basis of reports from specialist referees commissioned by the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信