在每个-类中具有有限多个幂等子的有限呈现反半群和非豪斯多夫普群

IF 0.5 4区 数学 Q3 MATHEMATICS
PEDRO V. SILVA, BENJAMIN STEINBERG
{"title":"在每个-类中具有有限多个幂等子的有限呈现反半群和非豪斯多夫普群","authors":"PEDRO V. SILVA, BENJAMIN STEINBERG","doi":"10.1017/s1446788723000198","DOIUrl":null,"url":null,"abstract":"<p>The complex algebra of an inverse semigroup with finitely many idempotents in each <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212123316423-0307:S1446788723000198:S1446788723000198_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal D$</span></span></img></span></span>-class is stably finite by a result of Munn. This can be proved fairly easily using <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212123316423-0307:S1446788723000198:S1446788723000198_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$C^{*}$</span></span></img></span></span>-algebras for inverse semigroups satisfying this condition that have a Hausdorff universal groupoid, or more generally for direct limits of inverse semigroups satisfying this condition and having Hausdorff universal groupoids. It is not difficult to see that a finitely presented inverse semigroup with a non-Hausdorff universal groupoid cannot be a direct limit of inverse semigroups with Hausdorff universal groupoids. We construct here countably many nonisomorphic finitely presented inverse semigroups with finitely many idempotents in each <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212123316423-0307:S1446788723000198:S1446788723000198_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal D$</span></span></img></span></span>-class and non-Hausdorff universal groupoids. At this time, there is not a clear <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212123316423-0307:S1446788723000198:S1446788723000198_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$C^{*}$</span></span></img></span></span>-algebraic technique to prove these inverse semigroups have stably finite complex algebras.</p>","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FINITELY PRESENTED INVERSE SEMIGROUPS WITH FINITELY MANY IDEMPOTENTS IN EACH -CLASS AND NON-HAUSDORFF UNIVERSAL GROUPOIDS\",\"authors\":\"PEDRO V. SILVA, BENJAMIN STEINBERG\",\"doi\":\"10.1017/s1446788723000198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The complex algebra of an inverse semigroup with finitely many idempotents in each <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212123316423-0307:S1446788723000198:S1446788723000198_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal D$</span></span></img></span></span>-class is stably finite by a result of Munn. This can be proved fairly easily using <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212123316423-0307:S1446788723000198:S1446788723000198_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$C^{*}$</span></span></img></span></span>-algebras for inverse semigroups satisfying this condition that have a Hausdorff universal groupoid, or more generally for direct limits of inverse semigroups satisfying this condition and having Hausdorff universal groupoids. It is not difficult to see that a finitely presented inverse semigroup with a non-Hausdorff universal groupoid cannot be a direct limit of inverse semigroups with Hausdorff universal groupoids. We construct here countably many nonisomorphic finitely presented inverse semigroups with finitely many idempotents in each <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212123316423-0307:S1446788723000198:S1446788723000198_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal D$</span></span></img></span></span>-class and non-Hausdorff universal groupoids. At this time, there is not a clear <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212123316423-0307:S1446788723000198:S1446788723000198_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$C^{*}$</span></span></img></span></span>-algebraic technique to prove these inverse semigroups have stably finite complex algebras.</p>\",\"PeriodicalId\":50007,\"journal\":{\"name\":\"Journal of the Australian Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s1446788723000198\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1446788723000198","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

根据芒恩的一个结果,在每个 $\mathcal D$ 类中具有有限多个幂等子的反半群的复代数是稳定有限的。对于满足这一条件且具有豪斯多夫通用群集的反半群,或者更一般地对于满足这一条件且具有豪斯多夫通用群集的反半群的直接极限,使用 $C^{*}$ 代数可以相当容易地证明这一点。不难看出,具有非豪斯多夫万能群的有限呈现反半群不可能是具有豪斯多夫万能群的反半群的直接极限。我们在这里构造了无数个非同构的有限呈现的反半群,这些反半群在每个 $\mathcal D$ 类中都有有限多个empotents,并且都是非豪斯多夫万能群。目前,还没有明确的$C^{*}$代数技术来证明这些反半群有稳定的有限复代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FINITELY PRESENTED INVERSE SEMIGROUPS WITH FINITELY MANY IDEMPOTENTS IN EACH -CLASS AND NON-HAUSDORFF UNIVERSAL GROUPOIDS

The complex algebra of an inverse semigroup with finitely many idempotents in each $\mathcal D$-class is stably finite by a result of Munn. This can be proved fairly easily using $C^{*}$-algebras for inverse semigroups satisfying this condition that have a Hausdorff universal groupoid, or more generally for direct limits of inverse semigroups satisfying this condition and having Hausdorff universal groupoids. It is not difficult to see that a finitely presented inverse semigroup with a non-Hausdorff universal groupoid cannot be a direct limit of inverse semigroups with Hausdorff universal groupoids. We construct here countably many nonisomorphic finitely presented inverse semigroups with finitely many idempotents in each $\mathcal D$-class and non-Hausdorff universal groupoids. At this time, there is not a clear $C^{*}$-algebraic technique to prove these inverse semigroups have stably finite complex algebras.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: The Journal of the Australian Mathematical Society is the oldest journal of the Society, and is well established in its coverage of all areas of pure mathematics and mathematical statistics. It seeks to publish original high-quality articles of moderate length that will attract wide interest. Papers are carefully reviewed, and those with good introductions explaining the meaning and value of the results are preferred. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信