拟南芥根帽中执行程序性细胞死亡的细胞分解过程受发育控制

Jie Wang, Norbert Bollier, Rafael Andrade Buono, Hannah Vahldick, Zongcheng Lin, Qiangnan Feng, Roman Hudecek, Qihang Jiang, Evelien Mylle, Daniel Van Damme, Moritz K Nowack
{"title":"拟南芥根帽中执行程序性细胞死亡的细胞分解过程受发育控制","authors":"Jie Wang, Norbert Bollier, Rafael Andrade Buono, Hannah Vahldick, Zongcheng Lin, Qiangnan Feng, Roman Hudecek, Qihang Jiang, Evelien Mylle, Daniel Van Damme, Moritz K Nowack","doi":"10.1093/plcell/koad308","DOIUrl":null,"url":null,"abstract":"Programmed cell death (PCD) is a fundamental cellular process crucial to development, homeostasis, and immunity in multicellular eukaryotes. In contrast to our knowledge on the regulation of diverse animal cell death subroutines, information on execution of PCD in plants remains fragmentary. Here we make use of the accessibility of the Arabidopsis (Arabidopsis thaliana) root cap to visualize the execution process of developmentally controlled PCD. We identify a succession of selective decompartmentalization events and ion fluxes as part of the terminal differentiation program that is orchestrated by the NAC (NO APICAL MERISTEM, ARABIDOPSIS THALIANA ACTIVATING FACTOR, CUP-SHAPED COTYLEDON) transcription factor SOMBRERO. Surprisingly, breakdown of the large central vacuole is a relatively late and variable event, preceded by an increase of intracellular calcium levels and acidification, release of mitochondrial matrix proteins, leakage of nuclear and endoplasmic reticulum lumina, and release of fluorescent membrane reporters into the cytosol. In analogy to animal apoptosis, the plasma membrane remains impermeable for proteins during and after PCD execution. Elevated intracellular calcium levels and acidification are sufficient to trigger cell death execution specifically in terminally differentiated root cap cells, suggesting that these ion fluxes act as PCD-triggering signals. This detailed information on the cellular processes occurring during developmental PCD in plants is a pivotal prerequisite for future research into the molecular mechanisms of cell death execution.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A developmentally controlled cellular decompartmentalization process executes programmed cell death in the Arabidopsis root cap\",\"authors\":\"Jie Wang, Norbert Bollier, Rafael Andrade Buono, Hannah Vahldick, Zongcheng Lin, Qiangnan Feng, Roman Hudecek, Qihang Jiang, Evelien Mylle, Daniel Van Damme, Moritz K Nowack\",\"doi\":\"10.1093/plcell/koad308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Programmed cell death (PCD) is a fundamental cellular process crucial to development, homeostasis, and immunity in multicellular eukaryotes. In contrast to our knowledge on the regulation of diverse animal cell death subroutines, information on execution of PCD in plants remains fragmentary. Here we make use of the accessibility of the Arabidopsis (Arabidopsis thaliana) root cap to visualize the execution process of developmentally controlled PCD. We identify a succession of selective decompartmentalization events and ion fluxes as part of the terminal differentiation program that is orchestrated by the NAC (NO APICAL MERISTEM, ARABIDOPSIS THALIANA ACTIVATING FACTOR, CUP-SHAPED COTYLEDON) transcription factor SOMBRERO. Surprisingly, breakdown of the large central vacuole is a relatively late and variable event, preceded by an increase of intracellular calcium levels and acidification, release of mitochondrial matrix proteins, leakage of nuclear and endoplasmic reticulum lumina, and release of fluorescent membrane reporters into the cytosol. In analogy to animal apoptosis, the plasma membrane remains impermeable for proteins during and after PCD execution. Elevated intracellular calcium levels and acidification are sufficient to trigger cell death execution specifically in terminally differentiated root cap cells, suggesting that these ion fluxes act as PCD-triggering signals. This detailed information on the cellular processes occurring during developmental PCD in plants is a pivotal prerequisite for future research into the molecular mechanisms of cell death execution.\",\"PeriodicalId\":501012,\"journal\":{\"name\":\"The Plant Cell\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Cell\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/plcell/koad308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/plcell/koad308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

程序性细胞死亡(PCD)是一个基本的细胞过程,对多细胞真核生物的发育、平衡和免疫至关重要。与我们对各种动物细胞死亡子程序调控的了解不同,有关植物中执行 PCD 的信息仍然很零碎。在这里,我们利用拟南芥(Arabidopsis thaliana)根帽的可及性来观察发育控制的 PCD 的执行过程。我们确定了一系列选择性分解事件和离子通量,它们是由 NAC(NO APICAL MERISTEM, ARABIDOPSIS THALIANA ACTIVATING FACTOR, CUP-SHAPED COTYLEDON)转录因子 SOMBRERO 协调的末期分化程序的一部分。令人惊讶的是,中央大液泡的破裂是一个相对较晚且可变的事件,在此之前,细胞内钙含量增加、酸化、线粒体基质蛋白释放、核和内质网膜渗漏以及荧光膜报告物释放到细胞质中。与动物凋亡类似,在执行 PCD 期间和之后,质膜对蛋白质仍然是不可渗透的。细胞内钙水平的升高和酸化足以触发细胞死亡的执行,特别是在终末分化的根帽细胞中,这表明这些离子通量是 PCD 触发信号。这些有关植物发育期 PCD 发生的细胞过程的详细信息是未来研究细胞死亡执行的分子机制的重要前提。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A developmentally controlled cellular decompartmentalization process executes programmed cell death in the Arabidopsis root cap
Programmed cell death (PCD) is a fundamental cellular process crucial to development, homeostasis, and immunity in multicellular eukaryotes. In contrast to our knowledge on the regulation of diverse animal cell death subroutines, information on execution of PCD in plants remains fragmentary. Here we make use of the accessibility of the Arabidopsis (Arabidopsis thaliana) root cap to visualize the execution process of developmentally controlled PCD. We identify a succession of selective decompartmentalization events and ion fluxes as part of the terminal differentiation program that is orchestrated by the NAC (NO APICAL MERISTEM, ARABIDOPSIS THALIANA ACTIVATING FACTOR, CUP-SHAPED COTYLEDON) transcription factor SOMBRERO. Surprisingly, breakdown of the large central vacuole is a relatively late and variable event, preceded by an increase of intracellular calcium levels and acidification, release of mitochondrial matrix proteins, leakage of nuclear and endoplasmic reticulum lumina, and release of fluorescent membrane reporters into the cytosol. In analogy to animal apoptosis, the plasma membrane remains impermeable for proteins during and after PCD execution. Elevated intracellular calcium levels and acidification are sufficient to trigger cell death execution specifically in terminally differentiated root cap cells, suggesting that these ion fluxes act as PCD-triggering signals. This detailed information on the cellular processes occurring during developmental PCD in plants is a pivotal prerequisite for future research into the molecular mechanisms of cell death execution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信