高超音速滑翔飞行器的分布式编队控制与障碍物和碰撞规避

IF 1.1 4区 工程技术 Q3 ENGINEERING, AEROSPACE
Zhen Zhang, Yifan Luo, Yaohong Qu
{"title":"高超音速滑翔飞行器的分布式编队控制与障碍物和碰撞规避","authors":"Zhen Zhang, Yifan Luo, Yaohong Qu","doi":"10.1155/2023/9973653","DOIUrl":null,"url":null,"abstract":"Multiple hypersonic gliding vehicles’ (HGVs’) formation control problems with obstacle and collision avoidance are investigated in this paper, which is addressed in the stage of entry gliding. The originality of this paper stems from the formation control algorithm where constraints of dynamic pressure, heating rate, total aerodynamic load, control inputs, collision avoidance, obstacle avoidance, and the terminal states are considered simultaneously. The algorithm implements a control framework designed to be of two terms: distributed virtual controller and actual control input solver. The distributed virtual controller is based on distributed model predictive control with synchronous update strategy, where the virtual control signals are derived by the optimization simultaneously at each time step for each HGV under directed communication topology. Subsequently, according to the virtual control signals obtained, a coupled nonlinear equation set is solved to get actual control signals: each HGV’s bank angle together with the angle of attack. The actual control input solver adopts a feasible solution process to calculate the actual control signals while dealing with constraints. Finally, extensive numerical simulations are implemented to unveil the proposed algorithm’s performance and superiority.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed Formation Control with Obstacle and Collision Avoidance for Hypersonic Gliding Vehicles Subject to Multiple Constraints\",\"authors\":\"Zhen Zhang, Yifan Luo, Yaohong Qu\",\"doi\":\"10.1155/2023/9973653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple hypersonic gliding vehicles’ (HGVs’) formation control problems with obstacle and collision avoidance are investigated in this paper, which is addressed in the stage of entry gliding. The originality of this paper stems from the formation control algorithm where constraints of dynamic pressure, heating rate, total aerodynamic load, control inputs, collision avoidance, obstacle avoidance, and the terminal states are considered simultaneously. The algorithm implements a control framework designed to be of two terms: distributed virtual controller and actual control input solver. The distributed virtual controller is based on distributed model predictive control with synchronous update strategy, where the virtual control signals are derived by the optimization simultaneously at each time step for each HGV under directed communication topology. Subsequently, according to the virtual control signals obtained, a coupled nonlinear equation set is solved to get actual control signals: each HGV’s bank angle together with the angle of attack. The actual control input solver adopts a feasible solution process to calculate the actual control signals while dealing with constraints. Finally, extensive numerical simulations are implemented to unveil the proposed algorithm’s performance and superiority.\",\"PeriodicalId\":13748,\"journal\":{\"name\":\"International Journal of Aerospace Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Aerospace Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/9973653\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/9973653","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了多个高超音速滑翔飞行器(HGVs)的编队控制问题,其中包括避障和避撞问题,该问题是在进入滑翔阶段解决的。本文的独创性源于编队控制算法,其中同时考虑了动压、加热率、总气动负荷、控制输入、避碰、避障和终端状态等约束条件。该算法实现的控制框架设计为两部分:分布式虚拟控制器和实际控制输入求解器。分布式虚拟控制器基于同步更新策略的分布式模型预测控制,在定向通信拓扑结构下,每辆重型车辆的虚拟控制信号都是在每个时间步同时通过优化得到的。随后,根据得到的虚拟控制信号,求解耦合非线性方程组,得到实际控制信号:每辆 HGV 的倾角和攻角。实际控制输入求解器采用可行的求解过程来计算实际控制信号,同时处理各种约束条件。最后,通过大量的数值模拟,揭示了所提出算法的性能和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed Formation Control with Obstacle and Collision Avoidance for Hypersonic Gliding Vehicles Subject to Multiple Constraints
Multiple hypersonic gliding vehicles’ (HGVs’) formation control problems with obstacle and collision avoidance are investigated in this paper, which is addressed in the stage of entry gliding. The originality of this paper stems from the formation control algorithm where constraints of dynamic pressure, heating rate, total aerodynamic load, control inputs, collision avoidance, obstacle avoidance, and the terminal states are considered simultaneously. The algorithm implements a control framework designed to be of two terms: distributed virtual controller and actual control input solver. The distributed virtual controller is based on distributed model predictive control with synchronous update strategy, where the virtual control signals are derived by the optimization simultaneously at each time step for each HGV under directed communication topology. Subsequently, according to the virtual control signals obtained, a coupled nonlinear equation set is solved to get actual control signals: each HGV’s bank angle together with the angle of attack. The actual control input solver adopts a feasible solution process to calculate the actual control signals while dealing with constraints. Finally, extensive numerical simulations are implemented to unveil the proposed algorithm’s performance and superiority.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
7.10%
发文量
195
审稿时长
22 weeks
期刊介绍: International Journal of Aerospace Engineering aims to serve the international aerospace engineering community through dissemination of scientific knowledge on practical engineering and design methodologies pertaining to aircraft and space vehicles. Original unpublished manuscripts are solicited on all areas of aerospace engineering including but not limited to: -Mechanics of materials and structures- Aerodynamics and fluid mechanics- Dynamics and control- Aeroacoustics- Aeroelasticity- Propulsion and combustion- Avionics and systems- Flight simulation and mechanics- Unmanned air vehicles (UAVs). Review articles on any of the above topics are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信