{"title":"通过保角变量的有界域二维流体动力学","authors":"Alexander Chernyavsky, Sergey Dyachenko","doi":"10.1111/sapm.12663","DOIUrl":null,"url":null,"abstract":"<p>In the present work, we compute numerical solutions of an integro-differential equation for traveling waves on the boundary of a 2D blob of an ideal fluid in the presence of surface tension. We find that solutions with multiple lobes tend to approach Crapper capillary waves in the limit of many lobes. Solutions with a few lobes become elongated as they become more nonlinear. It is unclear whether there is a limiting solution for small number of lobes, and what are its properties. Solutions are found from solving a nonlinear pseudodifferential equation by means of the Newton conjugate-residual method. We use Fourier basis to approximate the solution with the number of Fourier modes up to <math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>=</mo>\n <mn>65536</mn>\n </mrow>\n <annotation>$N = 65536$</annotation>\n </semantics></math>.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"152 3","pages":"837-846"},"PeriodicalIF":2.6000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of 2D fluid in bounded domain via conformal variables\",\"authors\":\"Alexander Chernyavsky, Sergey Dyachenko\",\"doi\":\"10.1111/sapm.12663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the present work, we compute numerical solutions of an integro-differential equation for traveling waves on the boundary of a 2D blob of an ideal fluid in the presence of surface tension. We find that solutions with multiple lobes tend to approach Crapper capillary waves in the limit of many lobes. Solutions with a few lobes become elongated as they become more nonlinear. It is unclear whether there is a limiting solution for small number of lobes, and what are its properties. Solutions are found from solving a nonlinear pseudodifferential equation by means of the Newton conjugate-residual method. We use Fourier basis to approximate the solution with the number of Fourier modes up to <math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <mo>=</mo>\\n <mn>65536</mn>\\n </mrow>\\n <annotation>$N = 65536$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":51174,\"journal\":{\"name\":\"Studies in Applied Mathematics\",\"volume\":\"152 3\",\"pages\":\"837-846\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12663\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12663","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Dynamics of 2D fluid in bounded domain via conformal variables
In the present work, we compute numerical solutions of an integro-differential equation for traveling waves on the boundary of a 2D blob of an ideal fluid in the presence of surface tension. We find that solutions with multiple lobes tend to approach Crapper capillary waves in the limit of many lobes. Solutions with a few lobes become elongated as they become more nonlinear. It is unclear whether there is a limiting solution for small number of lobes, and what are its properties. Solutions are found from solving a nonlinear pseudodifferential equation by means of the Newton conjugate-residual method. We use Fourier basis to approximate the solution with the number of Fourier modes up to .
期刊介绍:
Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.