通过保角变量的有界域二维流体动力学

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Alexander Chernyavsky, Sergey Dyachenko
{"title":"通过保角变量的有界域二维流体动力学","authors":"Alexander Chernyavsky,&nbsp;Sergey Dyachenko","doi":"10.1111/sapm.12663","DOIUrl":null,"url":null,"abstract":"<p>In the present work, we compute numerical solutions of an integro-differential equation for traveling waves on the boundary of a 2D blob of an ideal fluid in the presence of surface tension. We find that solutions with multiple lobes tend to approach Crapper capillary waves in the limit of many lobes. Solutions with a few lobes become elongated as they become more nonlinear. It is unclear whether there is a limiting solution for small number of lobes, and what are its properties. Solutions are found from solving a nonlinear pseudodifferential equation by means of the Newton conjugate-residual method. We use Fourier basis to approximate the solution with the number of Fourier modes up to <math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>=</mo>\n <mn>65536</mn>\n </mrow>\n <annotation>$N = 65536$</annotation>\n </semantics></math>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of 2D fluid in bounded domain via conformal variables\",\"authors\":\"Alexander Chernyavsky,&nbsp;Sergey Dyachenko\",\"doi\":\"10.1111/sapm.12663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the present work, we compute numerical solutions of an integro-differential equation for traveling waves on the boundary of a 2D blob of an ideal fluid in the presence of surface tension. We find that solutions with multiple lobes tend to approach Crapper capillary waves in the limit of many lobes. Solutions with a few lobes become elongated as they become more nonlinear. It is unclear whether there is a limiting solution for small number of lobes, and what are its properties. Solutions are found from solving a nonlinear pseudodifferential equation by means of the Newton conjugate-residual method. We use Fourier basis to approximate the solution with the number of Fourier modes up to <math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <mo>=</mo>\\n <mn>65536</mn>\\n </mrow>\\n <annotation>$N = 65536$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们计算了存在表面张力的理想流体二维球体边界上行波的积分微分方程的数值解。我们发现,具有多个裂片的解在多个裂片的极限下趋于接近克拉珀毛细管波。具有少量裂片的溶液随着非线性程度的增加而变得细长。目前还不清楚是否存在少量裂片的极限解,也不清楚其性质如何。我们采用牛顿共轭残差法求解非线性伪微分方程,从而找到解。我们使用傅里叶基来近似求解,傅里叶模式数最高可达 N=65536$N=65536$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics of 2D fluid in bounded domain via conformal variables

In the present work, we compute numerical solutions of an integro-differential equation for traveling waves on the boundary of a 2D blob of an ideal fluid in the presence of surface tension. We find that solutions with multiple lobes tend to approach Crapper capillary waves in the limit of many lobes. Solutions with a few lobes become elongated as they become more nonlinear. It is unclear whether there is a limiting solution for small number of lobes, and what are its properties. Solutions are found from solving a nonlinear pseudodifferential equation by means of the Newton conjugate-residual method. We use Fourier basis to approximate the solution with the number of Fourier modes up to N = 65536 $N = 65536$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信