{"title":"使用虚幻引擎在原子级别渲染细胞内的蛋白质结构","authors":"Muyuan Chen","doi":"10.1101/2023.12.08.570879","DOIUrl":null,"url":null,"abstract":"While the recent development of cryogenic electron tomography (CryoET) makes it possible to identify various macromolecules inside cells and determine their structure at near-atomic resolution, it remains challenging to visualize the complex cellular environment at the atomic level. One of the main hurdles in cell visualization is to render the millions of molecules in real time computationally. Here, using a video game engine, we demonstrate the capability of rendering massive biological macromolecules at the atomic level within their native environment. To facilitate the visualization, we also provide tools that help the interactive navigation inside the cells, as well as software that converts protein structures identified using CryoET to a scene that can be explored with the game engine.","PeriodicalId":501568,"journal":{"name":"bioRxiv - Scientific Communication and Education","volume":"98 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rendering protein structures inside cells at the atomic level with Unreal Engine\",\"authors\":\"Muyuan Chen\",\"doi\":\"10.1101/2023.12.08.570879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While the recent development of cryogenic electron tomography (CryoET) makes it possible to identify various macromolecules inside cells and determine their structure at near-atomic resolution, it remains challenging to visualize the complex cellular environment at the atomic level. One of the main hurdles in cell visualization is to render the millions of molecules in real time computationally. Here, using a video game engine, we demonstrate the capability of rendering massive biological macromolecules at the atomic level within their native environment. To facilitate the visualization, we also provide tools that help the interactive navigation inside the cells, as well as software that converts protein structures identified using CryoET to a scene that can be explored with the game engine.\",\"PeriodicalId\":501568,\"journal\":{\"name\":\"bioRxiv - Scientific Communication and Education\",\"volume\":\"98 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Scientific Communication and Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.12.08.570879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Scientific Communication and Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.12.08.570879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rendering protein structures inside cells at the atomic level with Unreal Engine
While the recent development of cryogenic electron tomography (CryoET) makes it possible to identify various macromolecules inside cells and determine their structure at near-atomic resolution, it remains challenging to visualize the complex cellular environment at the atomic level. One of the main hurdles in cell visualization is to render the millions of molecules in real time computationally. Here, using a video game engine, we demonstrate the capability of rendering massive biological macromolecules at the atomic level within their native environment. To facilitate the visualization, we also provide tools that help the interactive navigation inside the cells, as well as software that converts protein structures identified using CryoET to a scene that can be explored with the game engine.