Young Koung Lee, Andrew Olson, Keunhwa Kim, Masaru Ohme-Takagi, Doreen Ware
{"title":"拟南芥中的HB31和HB21通过miRNA396/GRF模块调控花卉结构","authors":"Young Koung Lee, Andrew Olson, Keunhwa Kim, Masaru Ohme-Takagi, Doreen Ware","doi":"10.1007/s11816-023-00870-5","DOIUrl":null,"url":null,"abstract":"<p>Floral architecture plays a pivotal role in developmental processes under genetic regulation and is also influenced by environmental cues. This affects the plant silique phenotype in <i>Arabidopsis</i> and grain yield in crops. Despite the relatively small number of family members of zinc finger homeodomain (ZF-HD) transcription factors (TFs) in plants, their biological role needs to be investigated to understand the molecular mechanisms associated with plant developmental processes. Therefore, we generated HB31SRDX and HB21SRDX repressor mutant lines to understand the functional role of ZF-HD TFs. The mutant lines showed severe defects in plant architecture, including increased branching number, reduced plant height, distorted floral phenotype, and short silique. We found that <i>HB31</i> and <i>HB21</i> are paralogs in <i>Arabidopsis</i>, and both positively regulate cell size-related genes, cell wall modification factor-related genes, and M-type MADS-box TF families. In addition, <i>HB31</i> and <i>HB21</i> are negatively associated with abiotic stress-related genes, vegetative-to-reproductive phase transition of meristem-related genes, and TCP and RAV TFs. microRNA164 (miR164), miR822, miR396, miR2934, and miR172 were downregulated, whereas miR169, miR398, miR399, and miR157 were upregulated in the two repressor lines. Phenotypic and molecular analyses demonstrated that the miR396/<i>GRF</i> modules regulated by <i>HB31</i> and <i>HB21</i> are involved in the plan floral architecture of <i>Arabidopsis</i>. The findings of this study will help elucidate the role of ZF-HD TFs in maintaining the floral architecture.</p>","PeriodicalId":20216,"journal":{"name":"Plant Biotechnology Reports","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HB31 and HB21 regulate floral architecture through miRNA396/GRF modules in Arabidopsis\",\"authors\":\"Young Koung Lee, Andrew Olson, Keunhwa Kim, Masaru Ohme-Takagi, Doreen Ware\",\"doi\":\"10.1007/s11816-023-00870-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Floral architecture plays a pivotal role in developmental processes under genetic regulation and is also influenced by environmental cues. This affects the plant silique phenotype in <i>Arabidopsis</i> and grain yield in crops. Despite the relatively small number of family members of zinc finger homeodomain (ZF-HD) transcription factors (TFs) in plants, their biological role needs to be investigated to understand the molecular mechanisms associated with plant developmental processes. Therefore, we generated HB31SRDX and HB21SRDX repressor mutant lines to understand the functional role of ZF-HD TFs. The mutant lines showed severe defects in plant architecture, including increased branching number, reduced plant height, distorted floral phenotype, and short silique. We found that <i>HB31</i> and <i>HB21</i> are paralogs in <i>Arabidopsis</i>, and both positively regulate cell size-related genes, cell wall modification factor-related genes, and M-type MADS-box TF families. In addition, <i>HB31</i> and <i>HB21</i> are negatively associated with abiotic stress-related genes, vegetative-to-reproductive phase transition of meristem-related genes, and TCP and RAV TFs. microRNA164 (miR164), miR822, miR396, miR2934, and miR172 were downregulated, whereas miR169, miR398, miR399, and miR157 were upregulated in the two repressor lines. Phenotypic and molecular analyses demonstrated that the miR396/<i>GRF</i> modules regulated by <i>HB31</i> and <i>HB21</i> are involved in the plan floral architecture of <i>Arabidopsis</i>. The findings of this study will help elucidate the role of ZF-HD TFs in maintaining the floral architecture.</p>\",\"PeriodicalId\":20216,\"journal\":{\"name\":\"Plant Biotechnology Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Biotechnology Reports\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11816-023-00870-5\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Reports","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11816-023-00870-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
HB31 and HB21 regulate floral architecture through miRNA396/GRF modules in Arabidopsis
Floral architecture plays a pivotal role in developmental processes under genetic regulation and is also influenced by environmental cues. This affects the plant silique phenotype in Arabidopsis and grain yield in crops. Despite the relatively small number of family members of zinc finger homeodomain (ZF-HD) transcription factors (TFs) in plants, their biological role needs to be investigated to understand the molecular mechanisms associated with plant developmental processes. Therefore, we generated HB31SRDX and HB21SRDX repressor mutant lines to understand the functional role of ZF-HD TFs. The mutant lines showed severe defects in plant architecture, including increased branching number, reduced plant height, distorted floral phenotype, and short silique. We found that HB31 and HB21 are paralogs in Arabidopsis, and both positively regulate cell size-related genes, cell wall modification factor-related genes, and M-type MADS-box TF families. In addition, HB31 and HB21 are negatively associated with abiotic stress-related genes, vegetative-to-reproductive phase transition of meristem-related genes, and TCP and RAV TFs. microRNA164 (miR164), miR822, miR396, miR2934, and miR172 were downregulated, whereas miR169, miR398, miR399, and miR157 were upregulated in the two repressor lines. Phenotypic and molecular analyses demonstrated that the miR396/GRF modules regulated by HB31 and HB21 are involved in the plan floral architecture of Arabidopsis. The findings of this study will help elucidate the role of ZF-HD TFs in maintaining the floral architecture.
期刊介绍:
Plant Biotechnology Reports publishes original, peer-reviewed articles dealing with all aspects of fundamental and applied research in the field of plant biotechnology, which includes molecular biology, genetics, biochemistry, cell and tissue culture, production of secondary metabolites, metabolic engineering, genomics, proteomics, and metabolomics. Plant Biotechnology Reports emphasizes studies on plants indigenous to the Asia-Pacific region and studies related to commercialization of plant biotechnology. Plant Biotechnology Reports does not exclude studies on lower plants including algae and cyanobacteria if studies are carried out within the aspects described above.