{"title":"日本绒螯蟹水解酶的功能作用和定位","authors":"Masato Takahashi , Kohei Takahashi , Taichi Yamaguchi , Takeshi Kohama , Masakiyo Hosokawa","doi":"10.1016/j.cbpb.2023.110932","DOIUrl":null,"url":null,"abstract":"<div><p>The Japanese mitten crab <em>Eriocheir japonica</em><span><span><span><span><span> inhabits rivers throughout Japan and is being cultivated for food. To conduct aquaculture efficiently, it is crucial to comprehend the physiological functions of the target organisms. However, there is a lack of fundamental information on Japanese mitten crabs. In this study, hydrolases were extracted from the midgut glands of Japanese mitten crabs and their metabolic activities were analyzed. An </span>enzyme with hydrolytic activity was discovered within the cytosol of the midgut gland. </span>Western blot analysis<span> also revealed that the Japanese mitten crab contains a hydrolase with cross-reactivity to human carboxylesterase 1 (hCES1) antibodies. The </span></span>substrate specificity<span> of the S9 fraction of the midgut gland was investigated and, interestingly, it was revealed that it reacts well with indomethacin phenyl ester and fluorescein diacetate, which are substrates of hCES2, not substrates of hCES1. Furthermore, this enzyme was observed to metabolize the ester derivative of </span></span>astaxanthin, which is a red pigment inherent to the Japanese mitten crab. These findings underscore the significance the midgut gland in the Japanese mitten crab as an important organ for metabolizing both endogenous and exogenous ester–type compounds.</span></p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional roles and localization of hydrolases in the Japanese mitten crab Eriocheir japonica\",\"authors\":\"Masato Takahashi , Kohei Takahashi , Taichi Yamaguchi , Takeshi Kohama , Masakiyo Hosokawa\",\"doi\":\"10.1016/j.cbpb.2023.110932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Japanese mitten crab <em>Eriocheir japonica</em><span><span><span><span><span> inhabits rivers throughout Japan and is being cultivated for food. To conduct aquaculture efficiently, it is crucial to comprehend the physiological functions of the target organisms. However, there is a lack of fundamental information on Japanese mitten crabs. In this study, hydrolases were extracted from the midgut glands of Japanese mitten crabs and their metabolic activities were analyzed. An </span>enzyme with hydrolytic activity was discovered within the cytosol of the midgut gland. </span>Western blot analysis<span> also revealed that the Japanese mitten crab contains a hydrolase with cross-reactivity to human carboxylesterase 1 (hCES1) antibodies. The </span></span>substrate specificity<span> of the S9 fraction of the midgut gland was investigated and, interestingly, it was revealed that it reacts well with indomethacin phenyl ester and fluorescein diacetate, which are substrates of hCES2, not substrates of hCES1. Furthermore, this enzyme was observed to metabolize the ester derivative of </span></span>astaxanthin, which is a red pigment inherent to the Japanese mitten crab. These findings underscore the significance the midgut gland in the Japanese mitten crab as an important organ for metabolizing both endogenous and exogenous ester–type compounds.</span></p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1096495923001070\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096495923001070","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Functional roles and localization of hydrolases in the Japanese mitten crab Eriocheir japonica
The Japanese mitten crab Eriocheir japonica inhabits rivers throughout Japan and is being cultivated for food. To conduct aquaculture efficiently, it is crucial to comprehend the physiological functions of the target organisms. However, there is a lack of fundamental information on Japanese mitten crabs. In this study, hydrolases were extracted from the midgut glands of Japanese mitten crabs and their metabolic activities were analyzed. An enzyme with hydrolytic activity was discovered within the cytosol of the midgut gland. Western blot analysis also revealed that the Japanese mitten crab contains a hydrolase with cross-reactivity to human carboxylesterase 1 (hCES1) antibodies. The substrate specificity of the S9 fraction of the midgut gland was investigated and, interestingly, it was revealed that it reacts well with indomethacin phenyl ester and fluorescein diacetate, which are substrates of hCES2, not substrates of hCES1. Furthermore, this enzyme was observed to metabolize the ester derivative of astaxanthin, which is a red pigment inherent to the Japanese mitten crab. These findings underscore the significance the midgut gland in the Japanese mitten crab as an important organ for metabolizing both endogenous and exogenous ester–type compounds.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.