Mohamad Shalaby, Timon Thomas, Christoph Pfrommer, Rouven Lemmerz, Virginia Bresci
{"title":"破解中间尺度不稳定性的物理基础","authors":"Mohamad Shalaby, Timon Thomas, Christoph Pfrommer, Rouven Lemmerz, Virginia Bresci","doi":"10.1017/s0022377823001289","DOIUrl":null,"url":null,"abstract":"<p>We study the underlying physics of cosmic ray (CR)-driven instabilities that play a crucial role for CR transport across a wide range of scales, from interstellar to galaxy cluster environments. By examining the linear dispersion relation of CR-driven instabilities in a magnetised electron–ion background plasma, we establish that both the intermediate and gyroscale instabilities have a resonant origin, and show that these resonances can be understood via a simple graphical interpretation. These instabilities destabilise wave modes parallel to the large-scale background magnetic field at significantly distinct scales and with very different phase speeds. Furthermore, we show that approximating the electron–ion background plasma with either magnetohydrodynamics (MHD) or Hall-MHD fails to capture the fastest-growing instability in the linear regime, namely the intermediate-scale instability. This finding highlights the importance of accurately characterising the background plasma for resolving the most unstable wave modes. Finally, we discuss the implications of the different phase speeds of unstable modes on particle–wave scattering. Further work is needed to investigate the relative importance of these two instabilities in the nonlinear, saturated regime and to develop a physical understanding of the effective CR transport coefficients in large-scale CR hydrodynamics theories.</p>","PeriodicalId":16846,"journal":{"name":"Journal of Plasma Physics","volume":"97 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering the physical basis of the intermediate-scale instability\",\"authors\":\"Mohamad Shalaby, Timon Thomas, Christoph Pfrommer, Rouven Lemmerz, Virginia Bresci\",\"doi\":\"10.1017/s0022377823001289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the underlying physics of cosmic ray (CR)-driven instabilities that play a crucial role for CR transport across a wide range of scales, from interstellar to galaxy cluster environments. By examining the linear dispersion relation of CR-driven instabilities in a magnetised electron–ion background plasma, we establish that both the intermediate and gyroscale instabilities have a resonant origin, and show that these resonances can be understood via a simple graphical interpretation. These instabilities destabilise wave modes parallel to the large-scale background magnetic field at significantly distinct scales and with very different phase speeds. Furthermore, we show that approximating the electron–ion background plasma with either magnetohydrodynamics (MHD) or Hall-MHD fails to capture the fastest-growing instability in the linear regime, namely the intermediate-scale instability. This finding highlights the importance of accurately characterising the background plasma for resolving the most unstable wave modes. Finally, we discuss the implications of the different phase speeds of unstable modes on particle–wave scattering. Further work is needed to investigate the relative importance of these two instabilities in the nonlinear, saturated regime and to develop a physical understanding of the effective CR transport coefficients in large-scale CR hydrodynamics theories.</p>\",\"PeriodicalId\":16846,\"journal\":{\"name\":\"Journal of Plasma Physics\",\"volume\":\"97 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plasma Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1017/s0022377823001289\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plasma Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/s0022377823001289","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Deciphering the physical basis of the intermediate-scale instability
We study the underlying physics of cosmic ray (CR)-driven instabilities that play a crucial role for CR transport across a wide range of scales, from interstellar to galaxy cluster environments. By examining the linear dispersion relation of CR-driven instabilities in a magnetised electron–ion background plasma, we establish that both the intermediate and gyroscale instabilities have a resonant origin, and show that these resonances can be understood via a simple graphical interpretation. These instabilities destabilise wave modes parallel to the large-scale background magnetic field at significantly distinct scales and with very different phase speeds. Furthermore, we show that approximating the electron–ion background plasma with either magnetohydrodynamics (MHD) or Hall-MHD fails to capture the fastest-growing instability in the linear regime, namely the intermediate-scale instability. This finding highlights the importance of accurately characterising the background plasma for resolving the most unstable wave modes. Finally, we discuss the implications of the different phase speeds of unstable modes on particle–wave scattering. Further work is needed to investigate the relative importance of these two instabilities in the nonlinear, saturated regime and to develop a physical understanding of the effective CR transport coefficients in large-scale CR hydrodynamics theories.
期刊介绍:
JPP aspires to be the intellectual home of those who think of plasma physics as a fundamental discipline. The journal focuses on publishing research on laboratory plasmas (including magnetically confined and inertial fusion plasmas), space physics and plasma astrophysics that takes advantage of the rapid ongoing progress in instrumentation and computing to advance fundamental understanding of multiscale plasma physics. The Journal welcomes submissions of analytical, numerical, observational and experimental work: both original research and tutorial- or review-style papers, as well as proposals for its Lecture Notes series.