有限维平面环和 Gabor 框架的时频分析

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
L.D. Abreu , P. Balazs , N. Holighaus , F. Luef , M. Speckbacher
{"title":"有限维平面环和 Gabor 框架的时频分析","authors":"L.D. Abreu ,&nbsp;P. Balazs ,&nbsp;N. Holighaus ,&nbsp;F. Luef ,&nbsp;M. Speckbacher","doi":"10.1016/j.acha.2023.101622","DOIUrl":null,"url":null,"abstract":"<div><p>We provide the foundations of a Hilbert space theory for the short-time Fourier transform (STFT) where the flat tori <span><math><msubsup><mrow><mi>T</mi></mrow><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>=</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mo>(</mo><mi>Z</mi><mo>×</mo><mi>N</mi><mi>Z</mi><mo>)</mo><mo>=</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>×</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>N</mi><mo>]</mo></math></span> act as phase spaces. We work on an <em>N</em>-dimensional subspace <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> of distributions periodic in time and frequency in the dual <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> of the Feichtinger algebra <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> and equip it with an inner product. To construct the Hilbert space <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> we apply a suitable double periodization operator to <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. On <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span>, the STFT is applied as the usual STFT defined on <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. This STFT is a continuous extension of the finite discrete Gabor transform from the lattice onto the entire flat torus. As such, sampling theorems on flat tori lead to Gabor frames in finite dimensions. For Gaussian windows, one is lead to spaces of analytic functions and the construction allows to prove a necessary and sufficient Nyquist rate type result, which is the analogue, for Gabor frames in finite dimensions, of a well known result of Lyubarskii and Seip-Wallstén for Gabor frames with Gaussian windows and which, for <em>N</em> odd, produces an explicit <em>full spark Gabor frame</em>. The compactness of the phase space, the finite dimension of the signal spaces and our sampling theorem offer practical advantages in some applications. We illustrate this by discussing a problem of current research interest: recovering signals from the zeros of their noisy spectrograms.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"69 ","pages":"Article 101622"},"PeriodicalIF":2.6000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1063520323001094/pdfft?md5=a748cc66b45e71833f86016f2331a024&pid=1-s2.0-S1063520323001094-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Time-frequency analysis on flat tori and Gabor frames in finite dimensions\",\"authors\":\"L.D. Abreu ,&nbsp;P. Balazs ,&nbsp;N. Holighaus ,&nbsp;F. Luef ,&nbsp;M. Speckbacher\",\"doi\":\"10.1016/j.acha.2023.101622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We provide the foundations of a Hilbert space theory for the short-time Fourier transform (STFT) where the flat tori <span><math><msubsup><mrow><mi>T</mi></mrow><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>=</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mo>(</mo><mi>Z</mi><mo>×</mo><mi>N</mi><mi>Z</mi><mo>)</mo><mo>=</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>×</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>N</mi><mo>]</mo></math></span> act as phase spaces. We work on an <em>N</em>-dimensional subspace <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> of distributions periodic in time and frequency in the dual <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> of the Feichtinger algebra <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> and equip it with an inner product. To construct the Hilbert space <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> we apply a suitable double periodization operator to <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. On <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span>, the STFT is applied as the usual STFT defined on <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. This STFT is a continuous extension of the finite discrete Gabor transform from the lattice onto the entire flat torus. As such, sampling theorems on flat tori lead to Gabor frames in finite dimensions. For Gaussian windows, one is lead to spaces of analytic functions and the construction allows to prove a necessary and sufficient Nyquist rate type result, which is the analogue, for Gabor frames in finite dimensions, of a well known result of Lyubarskii and Seip-Wallstén for Gabor frames with Gaussian windows and which, for <em>N</em> odd, produces an explicit <em>full spark Gabor frame</em>. The compactness of the phase space, the finite dimension of the signal spaces and our sampling theorem offer practical advantages in some applications. We illustrate this by discussing a problem of current research interest: recovering signals from the zeros of their noisy spectrograms.</p></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"69 \",\"pages\":\"Article 101622\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1063520323001094/pdfft?md5=a748cc66b45e71833f86016f2331a024&pid=1-s2.0-S1063520323001094-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520323001094\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520323001094","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们提供了短时傅立叶变换(STFT)的希尔伯特空间理论基础,其中平面环TN2=R2/(Z×NZ)=[0,1]×[0,N] 充当相空间。我们研究费希廷格代数 S0(R)的对偶 S0′(R)中时间和频率周期性分布的 N 维子空间 SN,并为其配备内积。为了构建希尔伯特空间 SN,我们在 S0(R)上应用合适的双周期化算子。在希尔伯特空间 SN 上,STFT 与定义在 S0′(R)上的 STFT 一样。这种 STFT 是有限离散 Gabor 变换从晶格到整个平面环的连续扩展。因此,平环面上的采样定理可以引出有限维度的 Gabor 框架。对于高斯窗,人们会进入解析函数空间,通过这种构造可以证明必要且充分的奈奎斯特率类型结果,对于有限维度的 Gabor 框架,该结果类似于 Lyubarskii 和 Seip-Wallstén 对于高斯窗 Gabor 框架的著名结果,对于奇数 N,该结果产生了明确的全火花 Gabor 框架。相空间的紧凑性、信号空间的有限维度以及我们的采样定理为某些应用提供了实际优势。我们将通过讨论一个当前研究热点问题来说明这一点:从噪声频谱图的零点恢复信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-frequency analysis on flat tori and Gabor frames in finite dimensions

We provide the foundations of a Hilbert space theory for the short-time Fourier transform (STFT) where the flat tori TN2=R2/(Z×NZ)=[0,1]×[0,N] act as phase spaces. We work on an N-dimensional subspace SN of distributions periodic in time and frequency in the dual S0(R) of the Feichtinger algebra S0(R) and equip it with an inner product. To construct the Hilbert space SN we apply a suitable double periodization operator to S0(R). On SN, the STFT is applied as the usual STFT defined on S0(R). This STFT is a continuous extension of the finite discrete Gabor transform from the lattice onto the entire flat torus. As such, sampling theorems on flat tori lead to Gabor frames in finite dimensions. For Gaussian windows, one is lead to spaces of analytic functions and the construction allows to prove a necessary and sufficient Nyquist rate type result, which is the analogue, for Gabor frames in finite dimensions, of a well known result of Lyubarskii and Seip-Wallstén for Gabor frames with Gaussian windows and which, for N odd, produces an explicit full spark Gabor frame. The compactness of the phase space, the finite dimension of the signal spaces and our sampling theorem offer practical advantages in some applications. We illustrate this by discussing a problem of current research interest: recovering signals from the zeros of their noisy spectrograms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信