周期带状托普利兹算子的数值范围

IF 0.8 Q2 MATHEMATICS
Benjamín A. Itzá-Ortiz, Rubén A. Martínez-Avendaño, Hiroshi Nakazato
{"title":"周期带状托普利兹算子的数值范围","authors":"Benjamín A. Itzá-Ortiz,&nbsp;Rubén A. Martínez-Avendaño,&nbsp;Hiroshi Nakazato","doi":"10.1007/s43036-023-00304-7","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that the closure of the numerical range of a <span>\\((n+1)\\)</span>-periodic and <span>\\((2m+1)\\)</span>-banded Toeplitz operator can be expressed as the closure of the convex hull of the uncountable union of numerical ranges of certain symbol matrices. In contrast to the periodic 3-banded (or tridiagonal) case, we show an example of a 2-periodic and 5-banded Toeplitz operator such that the closure of its numerical range is not equal to the numerical range of a single finite matrix.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The numerical range of periodic banded Toeplitz operators\",\"authors\":\"Benjamín A. Itzá-Ortiz,&nbsp;Rubén A. Martínez-Avendaño,&nbsp;Hiroshi Nakazato\",\"doi\":\"10.1007/s43036-023-00304-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove that the closure of the numerical range of a <span>\\\\((n+1)\\\\)</span>-periodic and <span>\\\\((2m+1)\\\\)</span>-banded Toeplitz operator can be expressed as the closure of the convex hull of the uncountable union of numerical ranges of certain symbol matrices. In contrast to the periodic 3-banded (or tridiagonal) case, we show an example of a 2-periodic and 5-banded Toeplitz operator such that the closure of its numerical range is not equal to the numerical range of a single finite matrix.</p></div>\",\"PeriodicalId\":44371,\"journal\":{\"name\":\"Advances in Operator Theory\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43036-023-00304-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-023-00304-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了一个((n+1)\)周期性和((2m+1)\)带状托普利茨算子的数值范围的闭包可以表示为某些符号矩阵的数值范围的不可数联盟的凸壳的闭包。与周期性三带(或三对角)情况相反,我们举例说明了一个二周期五带托普利兹算子,其数值范围的闭包不等于单个有限矩阵的数值范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The numerical range of periodic banded Toeplitz operators

We prove that the closure of the numerical range of a \((n+1)\)-periodic and \((2m+1)\)-banded Toeplitz operator can be expressed as the closure of the convex hull of the uncountable union of numerical ranges of certain symbol matrices. In contrast to the periodic 3-banded (or tridiagonal) case, we show an example of a 2-periodic and 5-banded Toeplitz operator such that the closure of its numerical range is not equal to the numerical range of a single finite matrix.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信