{"title":"污水处理厂污水排放对下游水生环境中抗生素耐药性组的影响:小型综述","authors":"Zhiguo Su, Lyujun Chen, Donghui Wen","doi":"10.1007/s11783-024-1796-3","DOIUrl":null,"url":null,"abstract":"<p>Antimicrobial resistance (AMR) has emerged as a significant challenge in human health. Wastewater treatment plants (WWTPs), acting as a link between human activities and the environment, create ideal conditions for the selection and spread of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). Unfortunately, current treatment processes are ineffective in removing ARGs, resulting in the release of large quantities of ARB and ARGs into the aquatic environment through WWTP effluents. This, in turn, leads to their dispersion and potential transmission to human through water and the food chain. To safeguard human and environmental health, it is crucial to comprehend the mechanisms by which WWTP effluent discharge influences the distribution and diffusion of ARGs in downstream waterbodies. In this study, we examine the latest researches on the antibiotic resistome in various waterbodies that have been exposed to WWTP effluent, highlighting the key influencing mechanisms. Furthermore, recommendations for future research and management strategies to control the dissemination of ARGs from WWTPs to the environment are provided, with the aim to achieve the “One Health” objective.\n</p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of wastewater treatment plant effluent discharge on the antibiotic resistome in downstream aquatic environments: a mini review\",\"authors\":\"Zhiguo Su, Lyujun Chen, Donghui Wen\",\"doi\":\"10.1007/s11783-024-1796-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Antimicrobial resistance (AMR) has emerged as a significant challenge in human health. Wastewater treatment plants (WWTPs), acting as a link between human activities and the environment, create ideal conditions for the selection and spread of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). Unfortunately, current treatment processes are ineffective in removing ARGs, resulting in the release of large quantities of ARB and ARGs into the aquatic environment through WWTP effluents. This, in turn, leads to their dispersion and potential transmission to human through water and the food chain. To safeguard human and environmental health, it is crucial to comprehend the mechanisms by which WWTP effluent discharge influences the distribution and diffusion of ARGs in downstream waterbodies. In this study, we examine the latest researches on the antibiotic resistome in various waterbodies that have been exposed to WWTP effluent, highlighting the key influencing mechanisms. Furthermore, recommendations for future research and management strategies to control the dissemination of ARGs from WWTPs to the environment are provided, with the aim to achieve the “One Health” objective.\\n</p>\",\"PeriodicalId\":12720,\"journal\":{\"name\":\"Frontiers of Environmental Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2023-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Environmental Science & Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s11783-024-1796-3\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Environmental Science & Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11783-024-1796-3","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Impact of wastewater treatment plant effluent discharge on the antibiotic resistome in downstream aquatic environments: a mini review
Antimicrobial resistance (AMR) has emerged as a significant challenge in human health. Wastewater treatment plants (WWTPs), acting as a link between human activities and the environment, create ideal conditions for the selection and spread of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). Unfortunately, current treatment processes are ineffective in removing ARGs, resulting in the release of large quantities of ARB and ARGs into the aquatic environment through WWTP effluents. This, in turn, leads to their dispersion and potential transmission to human through water and the food chain. To safeguard human and environmental health, it is crucial to comprehend the mechanisms by which WWTP effluent discharge influences the distribution and diffusion of ARGs in downstream waterbodies. In this study, we examine the latest researches on the antibiotic resistome in various waterbodies that have been exposed to WWTP effluent, highlighting the key influencing mechanisms. Furthermore, recommendations for future research and management strategies to control the dissemination of ARGs from WWTPs to the environment are provided, with the aim to achieve the “One Health” objective.
期刊介绍:
Frontiers of Environmental Science & Engineering (FESE) is an international journal for researchers interested in a wide range of environmental disciplines. The journal''s aim is to advance and disseminate knowledge in all main branches of environmental science & engineering. The journal emphasizes papers in developing fields, as well as papers showing the interaction between environmental disciplines and other disciplines.
FESE is a bi-monthly journal. Its peer-reviewed contents consist of a broad blend of reviews, research papers, policy analyses, short communications, and opinions. Nonscheduled “special issue” and "hot topic", including a review article followed by a couple of related research articles, are organized to publish novel contributions and breaking results on all aspects of environmental field.