不可擦写字符的公共零点

IF 0.5 4区 数学 Q3 MATHEMATICS
NGUYEN N. HUNG, ALEXANDER MORETÓ, LUCIA MOROTTI
{"title":"不可擦写字符的公共零点","authors":"NGUYEN N. HUNG, ALEXANDER MORETÓ, LUCIA MOROTTI","doi":"10.1017/s1446788723000216","DOIUrl":null,"url":null,"abstract":"<p>We study the zero-sharing behavior among irreducible characters of a finite group. For symmetric groups <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231208131534917-0583:S1446788723000216:S1446788723000216_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathsf {S}_n$</span></span></img></span></span>, it is proved that, with one exception, any two irreducible characters have at least one common zero. To further explore this phenomenon, we introduce <span>the common-zero graph</span> of a finite group <span>G</span>, with nonlinear irreducible characters of <span>G</span> as vertices, and edges connecting characters that vanish on some common group element. We show that for solvable and simple groups, the number of connected components of this graph is bounded above by three. Lastly, the result for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231208131534917-0583:S1446788723000216:S1446788723000216_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathsf {S}_n$</span></span></img></span></span> is applied to prove the nonequivalence of the metrics on permutations induced from faithful irreducible characters of the group.</p>","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COMMON ZEROS OF IRREDUCIBLE CHARACTERS\",\"authors\":\"NGUYEN N. HUNG, ALEXANDER MORETÓ, LUCIA MOROTTI\",\"doi\":\"10.1017/s1446788723000216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the zero-sharing behavior among irreducible characters of a finite group. For symmetric groups <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231208131534917-0583:S1446788723000216:S1446788723000216_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathsf {S}_n$</span></span></img></span></span>, it is proved that, with one exception, any two irreducible characters have at least one common zero. To further explore this phenomenon, we introduce <span>the common-zero graph</span> of a finite group <span>G</span>, with nonlinear irreducible characters of <span>G</span> as vertices, and edges connecting characters that vanish on some common group element. We show that for solvable and simple groups, the number of connected components of this graph is bounded above by three. Lastly, the result for <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231208131534917-0583:S1446788723000216:S1446788723000216_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathsf {S}_n$</span></span></img></span></span> is applied to prove the nonequivalence of the metrics on permutations induced from faithful irreducible characters of the group.</p>\",\"PeriodicalId\":50007,\"journal\":{\"name\":\"Journal of the Australian Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s1446788723000216\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1446788723000216","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究有限群中不可还原字符之间的零共享行为。对于对称群 $\mathsf {S}_n$,除了一个例外,任何两个不可还字符都至少有一个公共零点。为了进一步探讨这一现象,我们引入了有限群 G 的公共零图,以 G 的非线性不可还原字符为顶点,并以边连接在某些公共群元素上消失的字符。我们证明,对于可解群和简单群,该图的连通分量数以三为界。最后,我们应用 $\mathsf {S}_n$ 的结果来证明由群的忠实不可还原字符诱导的排列上的度量的非等价性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
COMMON ZEROS OF IRREDUCIBLE CHARACTERS

We study the zero-sharing behavior among irreducible characters of a finite group. For symmetric groups $\mathsf {S}_n$, it is proved that, with one exception, any two irreducible characters have at least one common zero. To further explore this phenomenon, we introduce the common-zero graph of a finite group G, with nonlinear irreducible characters of G as vertices, and edges connecting characters that vanish on some common group element. We show that for solvable and simple groups, the number of connected components of this graph is bounded above by three. Lastly, the result for $\mathsf {S}_n$ is applied to prove the nonequivalence of the metrics on permutations induced from faithful irreducible characters of the group.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: The Journal of the Australian Mathematical Society is the oldest journal of the Society, and is well established in its coverage of all areas of pure mathematics and mathematical statistics. It seeks to publish original high-quality articles of moderate length that will attract wide interest. Papers are carefully reviewed, and those with good introductions explaining the meaning and value of the results are preferred. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信