Yansong Zhu, Jizhen Liu, Yong Hu, Yan Xie, Deliang Zeng, Ruilian Li
{"title":"考虑深度削峰和可再生能源不确定性的分布式稳健优化模型","authors":"Yansong Zhu, Jizhen Liu, Yong Hu, Yan Xie, Deliang Zeng, Ruilian Li","doi":"10.1016/j.energy.2023.129935","DOIUrl":null,"url":null,"abstract":"<p>In order to achieve the goal of carbon neutrality, the capacity of renewable power generation is continuously expanding while thermal power units are transitioning from main power source to auxiliary power source. To alleviate the peak shaving burden of thermal power units under the uncertainty of renewable energy and improve the absorption level of renewable energy, a two-stage distributionally robust optimization (DRO) model considering deep peak shaving and the uncertainty of renewable energy is proposed. The day-ahead unit commitment solutions are determined in the first stage, and the detailed scheduling strategies are obtained in the second stage. Column-and-constraint generation (C&CG) algorithm is applied to solve the model, and the master problem and subproblem are reformulated as duality-free mixed integer linear programming problems. The results show that the scheduling strategy obtained based on the model can alleviate the peak shaving burden brought by the uncertainty of renewable energy and reduce the abandonment rate of wind resources and solar resources, and the proposed DRO model provides a good trade-off between economy and robustness compared to stochastic optimization (SO) and robust optimization (RO).</p>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"37 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributionally robust optimization model considering deep peak shaving and uncertainty of renewable energy\",\"authors\":\"Yansong Zhu, Jizhen Liu, Yong Hu, Yan Xie, Deliang Zeng, Ruilian Li\",\"doi\":\"10.1016/j.energy.2023.129935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In order to achieve the goal of carbon neutrality, the capacity of renewable power generation is continuously expanding while thermal power units are transitioning from main power source to auxiliary power source. To alleviate the peak shaving burden of thermal power units under the uncertainty of renewable energy and improve the absorption level of renewable energy, a two-stage distributionally robust optimization (DRO) model considering deep peak shaving and the uncertainty of renewable energy is proposed. The day-ahead unit commitment solutions are determined in the first stage, and the detailed scheduling strategies are obtained in the second stage. Column-and-constraint generation (C&CG) algorithm is applied to solve the model, and the master problem and subproblem are reformulated as duality-free mixed integer linear programming problems. The results show that the scheduling strategy obtained based on the model can alleviate the peak shaving burden brought by the uncertainty of renewable energy and reduce the abandonment rate of wind resources and solar resources, and the proposed DRO model provides a good trade-off between economy and robustness compared to stochastic optimization (SO) and robust optimization (RO).</p>\",\"PeriodicalId\":11647,\"journal\":{\"name\":\"Energy\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2023-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.energy.2023.129935\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.energy.2023.129935","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Distributionally robust optimization model considering deep peak shaving and uncertainty of renewable energy
In order to achieve the goal of carbon neutrality, the capacity of renewable power generation is continuously expanding while thermal power units are transitioning from main power source to auxiliary power source. To alleviate the peak shaving burden of thermal power units under the uncertainty of renewable energy and improve the absorption level of renewable energy, a two-stage distributionally robust optimization (DRO) model considering deep peak shaving and the uncertainty of renewable energy is proposed. The day-ahead unit commitment solutions are determined in the first stage, and the detailed scheduling strategies are obtained in the second stage. Column-and-constraint generation (C&CG) algorithm is applied to solve the model, and the master problem and subproblem are reformulated as duality-free mixed integer linear programming problems. The results show that the scheduling strategy obtained based on the model can alleviate the peak shaving burden brought by the uncertainty of renewable energy and reduce the abandonment rate of wind resources and solar resources, and the proposed DRO model provides a good trade-off between economy and robustness compared to stochastic optimization (SO) and robust optimization (RO).
期刊介绍:
Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics.
The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management.
Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.