Meghana Idamakanti, Elmer B. Ledesma, Ram R. Ratnakar, Michael P. Harold, Vemuri Balakotaiah and Praveen Bollini*,
{"title":"用于内热化学过程的电气化催化剂:材料需求、进展与挑战","authors":"Meghana Idamakanti, Elmer B. Ledesma, Ram R. Ratnakar, Michael P. Harold, Vemuri Balakotaiah and Praveen Bollini*, ","doi":"10.1021/acsengineeringau.3c00051","DOIUrl":null,"url":null,"abstract":"<p >Large-scale endothermic chemical processes, as currently practiced, employ tubular reactors that are heated externally through the combustion of fossil fuels, and are highly carbon-intensive. Joule-heated reactors in which electric currents flowing through the catalyst are used to provide thermal energy <i>directly</i> through internal heating are rapidly emerging as an alternative to these conventional, externally heated reactors. Joule-heated reactors could help significantly improve modularity and also reduce the capital, energy, and carbon footprint associated with these enthalpically demanding processes. Development of these novel types of reactors, however, is predicated on overcoming catalyst design challenges encountered uniquely when supplying heat through the use of electric currents passing through catalyst substrates. We review herein some key advancements in catalyst design that have been achieved in the recent past, and highlight considerations critical to the novel mode of reactor operation proposed. We provide an overview of the various types of electrically heated catalysts proposed, methods used in their synthesis, and reactor performance of Joule-heated catalysts for a variety of applications. Also discussed are key knowledge gaps that will likely need to be addressed in an effort to accelerate deployment of this emerging class of reactors that could play a pivotal role in the decarbonization of energy-intensive large-scale chemical processes.</p>","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":"4 1","pages":"71–90"},"PeriodicalIF":4.3000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.3c00051","citationCount":"0","resultStr":"{\"title\":\"Electrified Catalysts for Endothermic Chemical Processes: Materials Needs, Advances, and Challenges\",\"authors\":\"Meghana Idamakanti, Elmer B. Ledesma, Ram R. Ratnakar, Michael P. Harold, Vemuri Balakotaiah and Praveen Bollini*, \",\"doi\":\"10.1021/acsengineeringau.3c00051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Large-scale endothermic chemical processes, as currently practiced, employ tubular reactors that are heated externally through the combustion of fossil fuels, and are highly carbon-intensive. Joule-heated reactors in which electric currents flowing through the catalyst are used to provide thermal energy <i>directly</i> through internal heating are rapidly emerging as an alternative to these conventional, externally heated reactors. Joule-heated reactors could help significantly improve modularity and also reduce the capital, energy, and carbon footprint associated with these enthalpically demanding processes. Development of these novel types of reactors, however, is predicated on overcoming catalyst design challenges encountered uniquely when supplying heat through the use of electric currents passing through catalyst substrates. We review herein some key advancements in catalyst design that have been achieved in the recent past, and highlight considerations critical to the novel mode of reactor operation proposed. We provide an overview of the various types of electrically heated catalysts proposed, methods used in their synthesis, and reactor performance of Joule-heated catalysts for a variety of applications. Also discussed are key knowledge gaps that will likely need to be addressed in an effort to accelerate deployment of this emerging class of reactors that could play a pivotal role in the decarbonization of energy-intensive large-scale chemical processes.</p>\",\"PeriodicalId\":29804,\"journal\":{\"name\":\"ACS Engineering Au\",\"volume\":\"4 1\",\"pages\":\"71–90\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.3c00051\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Engineering Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsengineeringau.3c00051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Engineering Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsengineeringau.3c00051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Electrified Catalysts for Endothermic Chemical Processes: Materials Needs, Advances, and Challenges
Large-scale endothermic chemical processes, as currently practiced, employ tubular reactors that are heated externally through the combustion of fossil fuels, and are highly carbon-intensive. Joule-heated reactors in which electric currents flowing through the catalyst are used to provide thermal energy directly through internal heating are rapidly emerging as an alternative to these conventional, externally heated reactors. Joule-heated reactors could help significantly improve modularity and also reduce the capital, energy, and carbon footprint associated with these enthalpically demanding processes. Development of these novel types of reactors, however, is predicated on overcoming catalyst design challenges encountered uniquely when supplying heat through the use of electric currents passing through catalyst substrates. We review herein some key advancements in catalyst design that have been achieved in the recent past, and highlight considerations critical to the novel mode of reactor operation proposed. We provide an overview of the various types of electrically heated catalysts proposed, methods used in their synthesis, and reactor performance of Joule-heated catalysts for a variety of applications. Also discussed are key knowledge gaps that will likely need to be addressed in an effort to accelerate deployment of this emerging class of reactors that could play a pivotal role in the decarbonization of energy-intensive large-scale chemical processes.
期刊介绍:
)ACS Engineering Au is an open access journal that reports significant advances in chemical engineering applied chemistry and energy covering fundamentals processes and products. The journal's broad scope includes experimental theoretical mathematical computational chemical and physical research from academic and industrial settings. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Fundamental research in such areas as thermodynamics transport phenomena (flow mixing mass & heat transfer) chemical reaction kinetics and engineering catalysis separations interfacial phenomena and materialsProcess design development and intensification (e.g. process technologies for chemicals and materials synthesis and design methods process intensification multiphase reactors scale-up systems analysis process control data correlation schemes modeling machine learning Artificial Intelligence)Product research and development involving chemical and engineering aspects (e.g. catalysts plastics elastomers fibers adhesives coatings paper membranes lubricants ceramics aerosols fluidic devices intensified process equipment)Energy and fuels (e.g. pre-treatment processing and utilization of renewable energy resources; processing and utilization of fuels; properties and structure or molecular composition of both raw fuels and refined products; fuel cells hydrogen batteries; photochemical fuel and energy production; decarbonization; electrification; microwave; cavitation)Measurement techniques computational models and data on thermo-physical thermodynamic and transport properties of materials and phase equilibrium behaviorNew methods models and tools (e.g. real-time data analytics multi-scale models physics informed machine learning models machine learning enhanced physics-based models soft sensors high-performance computing)