书中的选择原则和证明

Boaz Tsaban
{"title":"书中的选择原则和证明","authors":"Boaz Tsaban","doi":"10.4153/s0008439523000905","DOIUrl":null,"url":null,"abstract":"<p>I provide simplified proofs for each of the following fundamental theorems regarding selection principles: </p><ol><li><p><span>(1)</span> The Quasinormal Convergence Theorem, due to the author and Zdomskyy, asserting that a certain, important property of the space of continuous functions on a space is actually preserved by Borel images of that space.</p></li><li><p><span>(2)</span> The Scheepers Diagram Last Theorem, due to Peng, completing all provable implications in the diagram.</p></li><li><p><span>(3)</span> The Menger Game Theorem, due to Telgársky, determining when Bob has a winning strategy in the game version of Menger’s covering property.</p></li><li><p><span>(4)</span> A lower bound on the additivity of Rothberger’s covering property, due to Carlson.</p></li></ol><p></p><p>The simplified proofs lead to several new results.</p>","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selection principles and proofs from the Book\",\"authors\":\"Boaz Tsaban\",\"doi\":\"10.4153/s0008439523000905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>I provide simplified proofs for each of the following fundamental theorems regarding selection principles: </p><ol><li><p><span>(1)</span> The Quasinormal Convergence Theorem, due to the author and Zdomskyy, asserting that a certain, important property of the space of continuous functions on a space is actually preserved by Borel images of that space.</p></li><li><p><span>(2)</span> The Scheepers Diagram Last Theorem, due to Peng, completing all provable implications in the diagram.</p></li><li><p><span>(3)</span> The Menger Game Theorem, due to Telgársky, determining when Bob has a winning strategy in the game version of Menger’s covering property.</p></li><li><p><span>(4)</span> A lower bound on the additivity of Rothberger’s covering property, due to Carlson.</p></li></ol><p></p><p>The simplified proofs lead to several new results.</p>\",\"PeriodicalId\":501184,\"journal\":{\"name\":\"Canadian Mathematical Bulletin\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Mathematical Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008439523000905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mathematical Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008439523000905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我为以下有关选择原则的基本定理逐一提供了简化证明:(1)准正收敛定理,作者和兹德姆斯基提出,断言空间上连续函数空间的某一重要性质实际上被该空间的伯勒尔图像所保留。 (2)谢珀斯图最后定理,彭提出,完成了图中所有可证明的含义。(3) Telgársky 提出的门格尔博弈定理(Menger Game Theorem),确定了在门格尔覆盖性质的博弈版本中,鲍勃何时有获胜策略。 (4) 卡尔森提出的罗斯伯格覆盖性质可加性的下限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Selection principles and proofs from the Book

I provide simplified proofs for each of the following fundamental theorems regarding selection principles:

  1. (1) The Quasinormal Convergence Theorem, due to the author and Zdomskyy, asserting that a certain, important property of the space of continuous functions on a space is actually preserved by Borel images of that space.

  2. (2) The Scheepers Diagram Last Theorem, due to Peng, completing all provable implications in the diagram.

  3. (3) The Menger Game Theorem, due to Telgársky, determining when Bob has a winning strategy in the game version of Menger’s covering property.

  4. (4) A lower bound on the additivity of Rothberger’s covering property, due to Carlson.

The simplified proofs lead to several new results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信