具有无限记忆效应与超临界摩擦阻尼的波方程能量衰减

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Menglan Liao
{"title":"具有无限记忆效应与超临界摩擦阻尼的波方程能量衰减","authors":"Menglan Liao","doi":"10.1007/s11587-023-00832-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, a class of damped viscoelastic wave equations </p><span>$$\\begin{aligned} u_{tt}-k(0)\\Delta u-\\int _0^\\infty k'(s)\\Delta u(t-s)ds+|u_t|^{m-1}u_t=|u|^{p-1}u \\end{aligned}$$</span><p>is considered in a bounded domain <span>\\(\\Omega \\subset {\\mathbb {R}}^3\\)</span>. Uniform energy decay was discussed which depends on the relaxation function <span>\\(-k'(s)\\)</span> in the previous work (Guo et al., Z Angew Math Phys 69:65, 2018) for <span>\\(1\\le m\\le 5\\)</span>. Depending on a key integral inequality obtained by Martinez (ESAIM Control Optim Calc Var 4:419–444, 1999), we establish the decay estimate of the total energy for <span>\\(m&gt;5\\)</span>. Our results improve and complement the previous one. As an example, a logarithmic energy decay is also presented.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy decay of wave equations with infinite memory effects versus supercritical frictional dampings\",\"authors\":\"Menglan Liao\",\"doi\":\"10.1007/s11587-023-00832-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, a class of damped viscoelastic wave equations </p><span>$$\\\\begin{aligned} u_{tt}-k(0)\\\\Delta u-\\\\int _0^\\\\infty k'(s)\\\\Delta u(t-s)ds+|u_t|^{m-1}u_t=|u|^{p-1}u \\\\end{aligned}$$</span><p>is considered in a bounded domain <span>\\\\(\\\\Omega \\\\subset {\\\\mathbb {R}}^3\\\\)</span>. Uniform energy decay was discussed which depends on the relaxation function <span>\\\\(-k'(s)\\\\)</span> in the previous work (Guo et al., Z Angew Math Phys 69:65, 2018) for <span>\\\\(1\\\\le m\\\\le 5\\\\)</span>. Depending on a key integral inequality obtained by Martinez (ESAIM Control Optim Calc Var 4:419–444, 1999), we establish the decay estimate of the total energy for <span>\\\\(m&gt;5\\\\)</span>. Our results improve and complement the previous one. As an example, a logarithmic energy decay is also presented.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11587-023-00832-7\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11587-023-00832-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了有界域 \(\Omega \subset {\mathbb {R}}^3\) 中的一类阻尼粘弹性波方程 $$begin{aligned}u_{tt}-k(0)\Delta u-\int _0^\infty k'(s)\Delta u(t-s)ds+|u_t|^{m-1}u_t=|u|^{p-1}u \end{aligned}$$。在之前的工作(Guo et al., Z Angew Math Phys 69:65, 2018)中,针对\(1\le m\le 5\)讨论了取决于弛豫函数\(-k'(s)\)的均匀能量衰减。根据马丁内斯(ESAIM Control Optim Calc Var 4:419-444,1999)获得的关键积分不等式,我们建立了对\(m>5\ )总能量的衰变估计。我们的结果改进并补充了之前的结果。作为一个例子,我们还提出了对数能量衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy decay of wave equations with infinite memory effects versus supercritical frictional dampings

In this paper, a class of damped viscoelastic wave equations

$$\begin{aligned} u_{tt}-k(0)\Delta u-\int _0^\infty k'(s)\Delta u(t-s)ds+|u_t|^{m-1}u_t=|u|^{p-1}u \end{aligned}$$

is considered in a bounded domain \(\Omega \subset {\mathbb {R}}^3\). Uniform energy decay was discussed which depends on the relaxation function \(-k'(s)\) in the previous work (Guo et al., Z Angew Math Phys 69:65, 2018) for \(1\le m\le 5\). Depending on a key integral inequality obtained by Martinez (ESAIM Control Optim Calc Var 4:419–444, 1999), we establish the decay estimate of the total energy for \(m>5\). Our results improve and complement the previous one. As an example, a logarithmic energy decay is also presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信