{"title":"直接参照和哥德巴赫难题","authors":"Stefan Rinner","doi":"10.1111/theo.12504","DOIUrl":null,"url":null,"abstract":"So-called Neo-Russellians, such as Salmon, Braun, Crimmins, and Perry, hold that the semantic content of ‘<math altimg=\"urn:x-wiley:theo:media:theo12504:theo12504-math-0001\" display=\"inline\" location=\"graphic/theo12504-math-0001.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>n</mi>\n</mrow>\n$$ n $$</annotation>\n</semantics></math> is <math altimg=\"urn:x-wiley:theo:media:theo12504:theo12504-math-0002\" display=\"inline\" location=\"graphic/theo12504-math-0002.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>F</mi>\n</mrow>\n$$ F $$</annotation>\n</semantics></math>’ in a context <math altimg=\"urn:x-wiley:theo:media:theo12504:theo12504-math-0004\" display=\"inline\" location=\"graphic/theo12504-math-0004.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>c</mi>\n</mrow>\n$$ c $$</annotation>\n</semantics></math> is the singular proposition <math altimg=\"urn:x-wiley:theo:media:theo12504:theo12504-math-0005\" display=\"inline\" location=\"graphic/theo12504-math-0005.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mo>⟨</mo>\n</mrow>\n$$ \\Big\\langle $$</annotation>\n</semantics></math>o, P<math altimg=\"urn:x-wiley:theo:media:theo12504:theo12504-math-0006\" display=\"inline\" location=\"graphic/theo12504-math-0006.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mo>⟩</mo>\n</mrow>\n$$ \\Big\\rangle $$</annotation>\n</semantics></math>, where <math altimg=\"urn:x-wiley:theo:media:theo12504:theo12504-math-0007\" display=\"inline\" location=\"graphic/theo12504-math-0007.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>o</mi>\n</mrow>\n$$ o $$</annotation>\n</semantics></math> is the referent of the name <math altimg=\"urn:x-wiley:theo:media:theo12504:theo12504-math-0008\" display=\"inline\" location=\"graphic/theo12504-math-0008.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>n</mi>\n</mrow>\n$$ n $$</annotation>\n</semantics></math> in <math altimg=\"urn:x-wiley:theo:media:theo12504:theo12504-math-0009\" display=\"inline\" location=\"graphic/theo12504-math-0009.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>c</mi>\n</mrow>\n$$ c $$</annotation>\n</semantics></math>, and <math altimg=\"urn:x-wiley:theo:media:theo12504:theo12504-math-0010\" display=\"inline\" location=\"graphic/theo12504-math-0010.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>P</mi>\n</mrow>\n$$ P $$</annotation>\n</semantics></math> is the property expressed by the predicate <math altimg=\"urn:x-wiley:theo:media:theo12504:theo12504-math-0011\" display=\"inline\" location=\"graphic/theo12504-math-0011.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>F</mi>\n</mrow>\n$$ F $$</annotation>\n</semantics></math> in <math altimg=\"urn:x-wiley:theo:media:theo12504:theo12504-math-0012\" display=\"inline\" location=\"graphic/theo12504-math-0012.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>c</mi>\n</mrow>\n$$ c $$</annotation>\n</semantics></math>. This is also known as the Neo-Russellian theory. Using truth ascriptions with names designating propositions, such as ‘Goldbach's conjecture’, in this paper, I will argue that, together with highly plausible principles regarding a priori knowledge, the Neo-Russellian theory leads to unacceptable consequences. I will call this ‘the Goldbach puzzle’. Since the solution to the Goldbach puzzle cannot be to reject the discussed principles regarding a priori knowledge, the puzzle will undermine the Neo-Russellian theory.","PeriodicalId":44638,"journal":{"name":"THEORIA","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct reference and the Goldbach puzzle\",\"authors\":\"Stefan Rinner\",\"doi\":\"10.1111/theo.12504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"So-called Neo-Russellians, such as Salmon, Braun, Crimmins, and Perry, hold that the semantic content of ‘<math altimg=\\\"urn:x-wiley:theo:media:theo12504:theo12504-math-0001\\\" display=\\\"inline\\\" location=\\\"graphic/theo12504-math-0001.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mi>n</mi>\\n</mrow>\\n$$ n $$</annotation>\\n</semantics></math> is <math altimg=\\\"urn:x-wiley:theo:media:theo12504:theo12504-math-0002\\\" display=\\\"inline\\\" location=\\\"graphic/theo12504-math-0002.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mi>F</mi>\\n</mrow>\\n$$ F $$</annotation>\\n</semantics></math>’ in a context <math altimg=\\\"urn:x-wiley:theo:media:theo12504:theo12504-math-0004\\\" display=\\\"inline\\\" location=\\\"graphic/theo12504-math-0004.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mi>c</mi>\\n</mrow>\\n$$ c $$</annotation>\\n</semantics></math> is the singular proposition <math altimg=\\\"urn:x-wiley:theo:media:theo12504:theo12504-math-0005\\\" display=\\\"inline\\\" location=\\\"graphic/theo12504-math-0005.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mo>⟨</mo>\\n</mrow>\\n$$ \\\\Big\\\\langle $$</annotation>\\n</semantics></math>o, P<math altimg=\\\"urn:x-wiley:theo:media:theo12504:theo12504-math-0006\\\" display=\\\"inline\\\" location=\\\"graphic/theo12504-math-0006.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mo>⟩</mo>\\n</mrow>\\n$$ \\\\Big\\\\rangle $$</annotation>\\n</semantics></math>, where <math altimg=\\\"urn:x-wiley:theo:media:theo12504:theo12504-math-0007\\\" display=\\\"inline\\\" location=\\\"graphic/theo12504-math-0007.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mi>o</mi>\\n</mrow>\\n$$ o $$</annotation>\\n</semantics></math> is the referent of the name <math altimg=\\\"urn:x-wiley:theo:media:theo12504:theo12504-math-0008\\\" display=\\\"inline\\\" location=\\\"graphic/theo12504-math-0008.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mi>n</mi>\\n</mrow>\\n$$ n $$</annotation>\\n</semantics></math> in <math altimg=\\\"urn:x-wiley:theo:media:theo12504:theo12504-math-0009\\\" display=\\\"inline\\\" location=\\\"graphic/theo12504-math-0009.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mi>c</mi>\\n</mrow>\\n$$ c $$</annotation>\\n</semantics></math>, and <math altimg=\\\"urn:x-wiley:theo:media:theo12504:theo12504-math-0010\\\" display=\\\"inline\\\" location=\\\"graphic/theo12504-math-0010.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mi>P</mi>\\n</mrow>\\n$$ P $$</annotation>\\n</semantics></math> is the property expressed by the predicate <math altimg=\\\"urn:x-wiley:theo:media:theo12504:theo12504-math-0011\\\" display=\\\"inline\\\" location=\\\"graphic/theo12504-math-0011.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mi>F</mi>\\n</mrow>\\n$$ F $$</annotation>\\n</semantics></math> in <math altimg=\\\"urn:x-wiley:theo:media:theo12504:theo12504-math-0012\\\" display=\\\"inline\\\" location=\\\"graphic/theo12504-math-0012.png\\\" overflow=\\\"scroll\\\">\\n<semantics>\\n<mrow>\\n<mi>c</mi>\\n</mrow>\\n$$ c $$</annotation>\\n</semantics></math>. This is also known as the Neo-Russellian theory. Using truth ascriptions with names designating propositions, such as ‘Goldbach's conjecture’, in this paper, I will argue that, together with highly plausible principles regarding a priori knowledge, the Neo-Russellian theory leads to unacceptable consequences. I will call this ‘the Goldbach puzzle’. Since the solution to the Goldbach puzzle cannot be to reject the discussed principles regarding a priori knowledge, the puzzle will undermine the Neo-Russellian theory.\",\"PeriodicalId\":44638,\"journal\":{\"name\":\"THEORIA\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"THEORIA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/theo.12504\",\"RegionNum\":3,\"RegionCategory\":\"哲学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SOCIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"THEORIA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/theo.12504","RegionNum":3,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOCIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
所谓的新鲁塞尔主义者,如 Salmon、Braun、Crimmins 和 Perry,认为'n$$ n $$ is F$$ F $$'在上下文 c$$ c $$中的语义内容是奇异命题 ⟨$$ \Big\langle $$o、P⟩$$ \Big\rangle $$$,其中 o$$ o $$是 n$$ n $$这个名称在 c$$ c $$中的所指,而 P$$ P $$是谓词 F$$ F $$在 c$$ c $$中表达的性质。这也被称为新鲁塞尔理论。在本文中,我将使用带有命题名称的真值描述,如 "哥德巴赫猜想",来论证新拉塞尔理论与关于先验知识的高度可信原则一起,会导致不可接受的后果。我将称之为'哥德巴赫猜想'。由于解决哥德巴赫猜想的办法不能是否定所讨论的先验知识原则,因此这个难题将破坏新鲁塞尔理论。
So-called Neo-Russellians, such as Salmon, Braun, Crimmins, and Perry, hold that the semantic content of ‘ is ’ in a context is the singular proposition o, P, where is the referent of the name in , and is the property expressed by the predicate in . This is also known as the Neo-Russellian theory. Using truth ascriptions with names designating propositions, such as ‘Goldbach's conjecture’, in this paper, I will argue that, together with highly plausible principles regarding a priori knowledge, the Neo-Russellian theory leads to unacceptable consequences. I will call this ‘the Goldbach puzzle’. Since the solution to the Goldbach puzzle cannot be to reject the discussed principles regarding a priori knowledge, the puzzle will undermine the Neo-Russellian theory.
期刊介绍:
Since its foundation in 1935, Theoria publishes research in all areas of philosophy. Theoria is committed to precision and clarity in philosophical discussions, and encourages cooperation between philosophy and other disciplines. The journal is not affiliated with any particular school or faction. Instead, it promotes dialogues between different philosophical viewpoints. Theoria is peer-reviewed. It publishes articles, reviews, and shorter notes and discussions. Short discussion notes on recent articles in Theoria are welcome.