Jia-Rui Li, Cui Jiang, Han Su, Di Qi, Lian-Lian Zhang, Wei-Jiang Gong
{"title":"多层非互惠苏-施里弗-黑格尔结构中依赖奇偶性的集肤效应和拓扑特性","authors":"Jia-Rui Li, Cui Jiang, Han Su, Di Qi, Lian-Lian Zhang, Wei-Jiang Gong","doi":"10.1007/s11467-023-1350-y","DOIUrl":null,"url":null,"abstract":"<div><p>We concentrate on the skin effects and topological properties in the multilayer non-Hermitian Su–Schrieffer–Heeger (SSH) structure, by taking into account the nonreciprocal couplings between the different sublattices in the unit cells. Following the detailed demonstration of the theoretical method, we find that in this system, the skin effects and topological phase transitions induced by nonreciprocal couplings display the apparent parity effect, following the increase of the layer number of this SSH structure. On the one hand, the skin effect is determined by the parity of the layer number of this SSH system, as well as the parity of the band index of the bulk states. On the other hand, for the topological edge modes, such an interesting parity effect can also be observed clearly. Next, when the parameter disorders are taken into account, the zero-energy edge modes in the odd-layer structures tend to be more robust, whereas the other edge modes are easy to be destroyed. In view of these results, it can be ascertained that the findings in this work promote to understand the influences of nonreciprocal couplings on the skin effects and topological properties in the multilayer SSH lattices.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":"19 3","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parity-dependent skin effects and topological properties in the multilayer nonreciprocal Su–Schrieffer–Heeger structures\",\"authors\":\"Jia-Rui Li, Cui Jiang, Han Su, Di Qi, Lian-Lian Zhang, Wei-Jiang Gong\",\"doi\":\"10.1007/s11467-023-1350-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We concentrate on the skin effects and topological properties in the multilayer non-Hermitian Su–Schrieffer–Heeger (SSH) structure, by taking into account the nonreciprocal couplings between the different sublattices in the unit cells. Following the detailed demonstration of the theoretical method, we find that in this system, the skin effects and topological phase transitions induced by nonreciprocal couplings display the apparent parity effect, following the increase of the layer number of this SSH structure. On the one hand, the skin effect is determined by the parity of the layer number of this SSH system, as well as the parity of the band index of the bulk states. On the other hand, for the topological edge modes, such an interesting parity effect can also be observed clearly. Next, when the parameter disorders are taken into account, the zero-energy edge modes in the odd-layer structures tend to be more robust, whereas the other edge modes are easy to be destroyed. In view of these results, it can be ascertained that the findings in this work promote to understand the influences of nonreciprocal couplings on the skin effects and topological properties in the multilayer SSH lattices.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":573,\"journal\":{\"name\":\"Frontiers of Physics\",\"volume\":\"19 3\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11467-023-1350-y\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11467-023-1350-y","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Parity-dependent skin effects and topological properties in the multilayer nonreciprocal Su–Schrieffer–Heeger structures
We concentrate on the skin effects and topological properties in the multilayer non-Hermitian Su–Schrieffer–Heeger (SSH) structure, by taking into account the nonreciprocal couplings between the different sublattices in the unit cells. Following the detailed demonstration of the theoretical method, we find that in this system, the skin effects and topological phase transitions induced by nonreciprocal couplings display the apparent parity effect, following the increase of the layer number of this SSH structure. On the one hand, the skin effect is determined by the parity of the layer number of this SSH system, as well as the parity of the band index of the bulk states. On the other hand, for the topological edge modes, such an interesting parity effect can also be observed clearly. Next, when the parameter disorders are taken into account, the zero-energy edge modes in the odd-layer structures tend to be more robust, whereas the other edge modes are easy to be destroyed. In view of these results, it can be ascertained that the findings in this work promote to understand the influences of nonreciprocal couplings on the skin effects and topological properties in the multilayer SSH lattices.
期刊介绍:
Frontiers of Physics is an international peer-reviewed journal dedicated to showcasing the latest advancements and significant progress in various research areas within the field of physics. The journal's scope is broad, covering a range of topics that include:
Quantum computation and quantum information
Atomic, molecular, and optical physics
Condensed matter physics, material sciences, and interdisciplinary research
Particle, nuclear physics, astrophysics, and cosmology
The journal's mission is to highlight frontier achievements, hot topics, and cross-disciplinary points in physics, facilitating communication and idea exchange among physicists both in China and internationally. It serves as a platform for researchers to share their findings and insights, fostering collaboration and innovation across different areas of physics.