{"title":"超重力和地球重力条件下铂丝上水和纳米流体核团沸腾临界热通量的实验研究","authors":"Yafeng Chen, Xiaohuan Li, Xiande Fang, Zhiqiang He, Yuxiang Fang","doi":"10.1007/s12217-023-10086-5","DOIUrl":null,"url":null,"abstract":"<div><p>The experimental investigation of the critical heat flux (CHF) of saturated nucleate pool boiling of pure water and water-based Al<sub>2</sub>O<sub>3</sub> nanofluids on the platinum wire with a diameter of 50 μm was conducted under earth gravity and hypergravity. The gravity level ranges from 1 to 3 g, the saturation pressures range from 0.1 to 0.6 MPa, and the Al<sub>2</sub>O<sub>3</sub> concentration in the nanofluids ranges from 0.001wt% to 0.015wt%. The experimental results show that both pressure and gravity are vital factors enhancing the CHF, with the effect of pressure more pronounced. For nanofluids with concentration C > 0.005wt %, CHF initially increased with the increase in gravity. When the gravity is greater than 2 g, CHF does not increase further with the increase in gravity. Increasing nanoparticle concentration significantly enhances the CHF for low nanoparticle concentrations less than 0.005 wt%, and the CHFs change little for further increasing the concentration. Nanofluid has a stronger enhancement to the pool boiling CHF than the combination of the heating surface coated with the same kind of nanoparticles and the base fluid. With the increase of particles concentration, Surface modification gradually becomes dominant mechanism for CHF enhancement.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Investigation of Critical Heat Flux of Nucleate Pool Boiling of Water and Nanofluid on Platinum Wire Under Hypergravity and Earth Gravity\",\"authors\":\"Yafeng Chen, Xiaohuan Li, Xiande Fang, Zhiqiang He, Yuxiang Fang\",\"doi\":\"10.1007/s12217-023-10086-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The experimental investigation of the critical heat flux (CHF) of saturated nucleate pool boiling of pure water and water-based Al<sub>2</sub>O<sub>3</sub> nanofluids on the platinum wire with a diameter of 50 μm was conducted under earth gravity and hypergravity. The gravity level ranges from 1 to 3 g, the saturation pressures range from 0.1 to 0.6 MPa, and the Al<sub>2</sub>O<sub>3</sub> concentration in the nanofluids ranges from 0.001wt% to 0.015wt%. The experimental results show that both pressure and gravity are vital factors enhancing the CHF, with the effect of pressure more pronounced. For nanofluids with concentration C > 0.005wt %, CHF initially increased with the increase in gravity. When the gravity is greater than 2 g, CHF does not increase further with the increase in gravity. Increasing nanoparticle concentration significantly enhances the CHF for low nanoparticle concentrations less than 0.005 wt%, and the CHFs change little for further increasing the concentration. Nanofluid has a stronger enhancement to the pool boiling CHF than the combination of the heating surface coated with the same kind of nanoparticles and the base fluid. With the increase of particles concentration, Surface modification gradually becomes dominant mechanism for CHF enhancement.</p></div>\",\"PeriodicalId\":707,\"journal\":{\"name\":\"Microgravity Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microgravity Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12217-023-10086-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-023-10086-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Experimental Investigation of Critical Heat Flux of Nucleate Pool Boiling of Water and Nanofluid on Platinum Wire Under Hypergravity and Earth Gravity
The experimental investigation of the critical heat flux (CHF) of saturated nucleate pool boiling of pure water and water-based Al2O3 nanofluids on the platinum wire with a diameter of 50 μm was conducted under earth gravity and hypergravity. The gravity level ranges from 1 to 3 g, the saturation pressures range from 0.1 to 0.6 MPa, and the Al2O3 concentration in the nanofluids ranges from 0.001wt% to 0.015wt%. The experimental results show that both pressure and gravity are vital factors enhancing the CHF, with the effect of pressure more pronounced. For nanofluids with concentration C > 0.005wt %, CHF initially increased with the increase in gravity. When the gravity is greater than 2 g, CHF does not increase further with the increase in gravity. Increasing nanoparticle concentration significantly enhances the CHF for low nanoparticle concentrations less than 0.005 wt%, and the CHFs change little for further increasing the concentration. Nanofluid has a stronger enhancement to the pool boiling CHF than the combination of the heating surface coated with the same kind of nanoparticles and the base fluid. With the increase of particles concentration, Surface modification gradually becomes dominant mechanism for CHF enhancement.
期刊介绍:
Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity.
Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges).
Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are:
− materials science
− fluid mechanics
− process engineering
− physics
− chemistry
− heat and mass transfer
− gravitational biology
− radiation biology
− exobiology and astrobiology
− human physiology