{"title":"慢性消耗性疾病的双曲线反应-扩散模型","authors":"Elvira Barbera, Annamaria Pollino","doi":"10.1007/s11587-023-00831-8","DOIUrl":null,"url":null,"abstract":"<p>A hyperbolic reaction–diffusion model is developed in the framework of Extended Thermodynamics in order to describe the spatio-temporal dynamics of populations afflicted by chronic wasting diseases. The hyperbolic structure of the system guarantees that the wave processes occur at finite velocity, so that the paradox of instantaneous diffusion, typical of parabolic systems, is removed. The character of steady states, together with the Hopf bifurcation, are investigated through linear stability analysis. The model is integrated numerically to valuate the behavior of the populations. Finally, the propagation of acceleration waves is analyzed.\n</p>","PeriodicalId":21373,"journal":{"name":"Ricerche di Matematica","volume":"17 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hyperbolic reaction–diffusion model of chronic wasting disease\",\"authors\":\"Elvira Barbera, Annamaria Pollino\",\"doi\":\"10.1007/s11587-023-00831-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A hyperbolic reaction–diffusion model is developed in the framework of Extended Thermodynamics in order to describe the spatio-temporal dynamics of populations afflicted by chronic wasting diseases. The hyperbolic structure of the system guarantees that the wave processes occur at finite velocity, so that the paradox of instantaneous diffusion, typical of parabolic systems, is removed. The character of steady states, together with the Hopf bifurcation, are investigated through linear stability analysis. The model is integrated numerically to valuate the behavior of the populations. Finally, the propagation of acceleration waves is analyzed.\\n</p>\",\"PeriodicalId\":21373,\"journal\":{\"name\":\"Ricerche di Matematica\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ricerche di Matematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11587-023-00831-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ricerche di Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11587-023-00831-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A hyperbolic reaction–diffusion model of chronic wasting disease
A hyperbolic reaction–diffusion model is developed in the framework of Extended Thermodynamics in order to describe the spatio-temporal dynamics of populations afflicted by chronic wasting diseases. The hyperbolic structure of the system guarantees that the wave processes occur at finite velocity, so that the paradox of instantaneous diffusion, typical of parabolic systems, is removed. The character of steady states, together with the Hopf bifurcation, are investigated through linear stability analysis. The model is integrated numerically to valuate the behavior of the populations. Finally, the propagation of acceleration waves is analyzed.
期刊介绍:
“Ricerche di Matematica” publishes high-quality research articles in any field of pure and applied mathematics. Articles must be original and written in English. Details about article submission can be found online.