从第一代花旗松后代测试中估算木材特性遗传参数

IF 3.1 2区 农林科学 Q1 FORESTRY
L. R. Schimleck, K. J. S. Jayawickrama, T. Z. Ye
{"title":"从第一代花旗松后代测试中估算木材特性遗传参数","authors":"L. R. Schimleck,&nbsp;K. J. S. Jayawickrama,&nbsp;T. Z. Ye","doi":"10.1007/s00226-023-01516-z","DOIUrl":null,"url":null,"abstract":"<div><p>Douglas-fir (<i>Pseudotsuga menziesii</i> (Mirbel) Franco) is the most important commercial timber species in the United States Pacific Northwest (US PNW). Owing to its significance, Douglas-fir has been the subject of long-term tree improvement. First-generation and second-generation progeny tests are available for wood property evaluation, but aside from specific gravity (from increment cores) and stiffness (usually determined on standing trees using acoustics), the estimation of genetic parameters has been limited. There is interest in evaluating trees for wood stiffness, but the cost of evaluation is generally a barrier. Near infrared hyperspectral imaging (NIR-HSI) may provide a rapid technique for the estimation of a variety of wood properties, providing wood property data is available for building predictive models. In this study, SilviScan was used to assess tracheid properties (wall thickness, coarseness, specific surface and radial and tangential diameter), air-dry density, microfibril angle (MFA) and stiffness for 40 calibration samples, 20 each from two progeny tests aged ten and twelve years, respectively (500 samples in all, one test site from each of two independent first-generation breeding programs). Wood properties were measured on sections of increment cores representing the five growth rings adjacent to the bark. Based on the NIR-HSI and SilviScan data from the 40 calibration samples, models were built to predict wood properties of all samples. These data were used to estimate heritabilities and trait-to-trait genetic correlations. Results from this preliminary study are encouraging and the technique can be explored on larger, multi-site, datasets.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wood property genetic parameter estimation from first-generation Douglas-fir progeny tests\",\"authors\":\"L. R. Schimleck,&nbsp;K. J. S. Jayawickrama,&nbsp;T. Z. Ye\",\"doi\":\"10.1007/s00226-023-01516-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Douglas-fir (<i>Pseudotsuga menziesii</i> (Mirbel) Franco) is the most important commercial timber species in the United States Pacific Northwest (US PNW). Owing to its significance, Douglas-fir has been the subject of long-term tree improvement. First-generation and second-generation progeny tests are available for wood property evaluation, but aside from specific gravity (from increment cores) and stiffness (usually determined on standing trees using acoustics), the estimation of genetic parameters has been limited. There is interest in evaluating trees for wood stiffness, but the cost of evaluation is generally a barrier. Near infrared hyperspectral imaging (NIR-HSI) may provide a rapid technique for the estimation of a variety of wood properties, providing wood property data is available for building predictive models. In this study, SilviScan was used to assess tracheid properties (wall thickness, coarseness, specific surface and radial and tangential diameter), air-dry density, microfibril angle (MFA) and stiffness for 40 calibration samples, 20 each from two progeny tests aged ten and twelve years, respectively (500 samples in all, one test site from each of two independent first-generation breeding programs). Wood properties were measured on sections of increment cores representing the five growth rings adjacent to the bark. Based on the NIR-HSI and SilviScan data from the 40 calibration samples, models were built to predict wood properties of all samples. These data were used to estimate heritabilities and trait-to-trait genetic correlations. Results from this preliminary study are encouraging and the technique can be explored on larger, multi-site, datasets.</p></div>\",\"PeriodicalId\":810,\"journal\":{\"name\":\"Wood Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wood Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00226-023-01516-z\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00226-023-01516-z","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

花旗松(Pseudotsuga menziesii (Mirbel) Franco)是美国西北太平洋地区(US PNW)最重要的商业用材树种。由于其重要性,花旗松一直是树木长期改良的对象。第一代和第二代后代测试可用于木材特性评估,但除了比重(来自增量核心)和刚度(通常使用声学方法对立木进行测定)之外,遗传参数的估算一直很有限。人们对评估树木的木材硬度很感兴趣,但评估成本通常是一个障碍。近红外高光谱成像(NIR-HSI)可为估算各种木材特性提供一种快速技术,但前提是木材特性数据可用于建立预测模型。在这项研究中,SilviScan 被用于评估 40 个校准样本的气管特性(壁厚、粗度、比表面、径向和切向直径)、气干密度、微纤丝角 (MFA) 和刚度,其中每个样本 20 个,分别来自两个树龄分别为 10 年和 12 年的后代试验(共 500 个样本,来自两个独立的第一代育种项目中的每个试验场地)。对代表树皮附近五个生长年轮的增量核切片进行了木材特性测量。根据来自 40 个校准样本的 NIR-HSI 和 SilviScan 数据,建立了预测所有样本木材特性的模型。这些数据用于估算遗传率和性状间的遗传相关性。这项初步研究的结果令人鼓舞,可以在更大的、多地点的数据集上探索这项技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Wood property genetic parameter estimation from first-generation Douglas-fir progeny tests

Wood property genetic parameter estimation from first-generation Douglas-fir progeny tests

Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco) is the most important commercial timber species in the United States Pacific Northwest (US PNW). Owing to its significance, Douglas-fir has been the subject of long-term tree improvement. First-generation and second-generation progeny tests are available for wood property evaluation, but aside from specific gravity (from increment cores) and stiffness (usually determined on standing trees using acoustics), the estimation of genetic parameters has been limited. There is interest in evaluating trees for wood stiffness, but the cost of evaluation is generally a barrier. Near infrared hyperspectral imaging (NIR-HSI) may provide a rapid technique for the estimation of a variety of wood properties, providing wood property data is available for building predictive models. In this study, SilviScan was used to assess tracheid properties (wall thickness, coarseness, specific surface and radial and tangential diameter), air-dry density, microfibril angle (MFA) and stiffness for 40 calibration samples, 20 each from two progeny tests aged ten and twelve years, respectively (500 samples in all, one test site from each of two independent first-generation breeding programs). Wood properties were measured on sections of increment cores representing the five growth rings adjacent to the bark. Based on the NIR-HSI and SilviScan data from the 40 calibration samples, models were built to predict wood properties of all samples. These data were used to estimate heritabilities and trait-to-trait genetic correlations. Results from this preliminary study are encouraging and the technique can be explored on larger, multi-site, datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wood Science and Technology
Wood Science and Technology 工程技术-材料科学:纸与木材
CiteScore
5.90
自引率
5.90%
发文量
75
审稿时长
3 months
期刊介绍: Wood Science and Technology publishes original scientific research results and review papers covering the entire field of wood material science, wood components and wood based products. Subjects are wood biology and wood quality, wood physics and physical technologies, wood chemistry and chemical technologies. Latest advances in areas such as cell wall and wood formation; structural and chemical composition of wood and wood composites and their property relations; physical, mechanical and chemical characterization and relevant methodological developments, and microbiological degradation of wood and wood based products are reported. Topics related to wood technology include machining, gluing, and finishing, composite technology, wood modification, wood mechanics, creep and rheology, and the conversion of wood into pulp and biorefinery products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信