加速绘制 TRISO 高级核燃料的热性能图

IF 8.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Michael Moorehead, Zilong Hua, Kevin Vallejo, Geoffrey Leonard Beausoleil II, Amey Khanolkar, Tyler Gerczak, Marat Khafizov, David Hurley
{"title":"加速绘制 TRISO 高级核燃料的热性能图","authors":"Michael Moorehead, Zilong Hua, Kevin Vallejo, Geoffrey Leonard Beausoleil II, Amey Khanolkar, Tyler Gerczak, Marat Khafizov, David Hurley","doi":"10.1016/j.mtadv.2023.100455","DOIUrl":null,"url":null,"abstract":"<p>TRistructural ISOtropic (TRISO) fuel is a leading-edge nuclear fuel form representing a departure from the more traditional nuclear fuel forms utilized in the reactor fleet of today. Rather than a monolithic fuel pellet of uranium dioxide, integral fuel forms containing TRISO fuel are composed of thousands of microencapsulated uranium-bearing fuel kernels and individually coated with multiple layers of pyrolytic carbon and silicon carbide. These multilayered ceramic coatings serve as an environmental barrier to ensure radioactive and chemically reactive fission products are contained within the reactor fuel elements, but also participate in the transfer of heat generated in the nuclear fuel to the coolant – the primary purpose of a nuclear reactor. Since traditional thermal property measurement techniques, such as laser flash analysis, would be unable to resolve the thermal properties of the individual TRISO coating layers, a simplified frequency-domain thermoreflectance technique has been developed to rapidly map the thermal properties of TRISO particles. Using this technique, the thermal properties of TRISO particles have been mapped from room temperature up to 1000 °C to examine the spatial variation and temperature-dependency of the thermal properties within each layer. Additionally, spatial-domain thermoreflectance was used to examine the anisotropy of the thermal properties for each layer at different locations within a single TRISO particle, and across multiple TRISO particles to assess the intra- and inter-particle uniformity of thermal properties, respectively. To elucidate the underlying causes for the measured variations in thermal properties, scanning electron microscopy and Raman spectroscopy were used to examine variations in microstructure and chemical bonding within the different coating layers. Results from this work are then compared with previous examinations of TRISO fuel particles and microstructurally driven mechanisms for the variations in the measured thermal properties of the different carbonaceous layers are discussed.</p>","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"4 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerated thermal property mapping of TRISO advanced nuclear fuel\",\"authors\":\"Michael Moorehead, Zilong Hua, Kevin Vallejo, Geoffrey Leonard Beausoleil II, Amey Khanolkar, Tyler Gerczak, Marat Khafizov, David Hurley\",\"doi\":\"10.1016/j.mtadv.2023.100455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>TRistructural ISOtropic (TRISO) fuel is a leading-edge nuclear fuel form representing a departure from the more traditional nuclear fuel forms utilized in the reactor fleet of today. Rather than a monolithic fuel pellet of uranium dioxide, integral fuel forms containing TRISO fuel are composed of thousands of microencapsulated uranium-bearing fuel kernels and individually coated with multiple layers of pyrolytic carbon and silicon carbide. These multilayered ceramic coatings serve as an environmental barrier to ensure radioactive and chemically reactive fission products are contained within the reactor fuel elements, but also participate in the transfer of heat generated in the nuclear fuel to the coolant – the primary purpose of a nuclear reactor. Since traditional thermal property measurement techniques, such as laser flash analysis, would be unable to resolve the thermal properties of the individual TRISO coating layers, a simplified frequency-domain thermoreflectance technique has been developed to rapidly map the thermal properties of TRISO particles. Using this technique, the thermal properties of TRISO particles have been mapped from room temperature up to 1000 °C to examine the spatial variation and temperature-dependency of the thermal properties within each layer. Additionally, spatial-domain thermoreflectance was used to examine the anisotropy of the thermal properties for each layer at different locations within a single TRISO particle, and across multiple TRISO particles to assess the intra- and inter-particle uniformity of thermal properties, respectively. To elucidate the underlying causes for the measured variations in thermal properties, scanning electron microscopy and Raman spectroscopy were used to examine variations in microstructure and chemical bonding within the different coating layers. Results from this work are then compared with previous examinations of TRISO fuel particles and microstructurally driven mechanisms for the variations in the measured thermal properties of the different carbonaceous layers are discussed.</p>\",\"PeriodicalId\":48495,\"journal\":{\"name\":\"Materials Today Advances\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2023-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtadv.2023.100455\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtadv.2023.100455","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

TRistructural ISOtropic(TRISO)燃料是一种先进的核燃料形式,不同于当今反应堆中使用的传统核燃料形式。含有 TRISO 燃料的整体燃料形式不是由二氧化铀组成的整体燃料颗粒,而是由成千上万个微囊化的含铀燃料颗粒组成,并分别涂有多层热解碳和碳化硅涂层。这些多层陶瓷涂层起到环境屏障的作用,确保放射性和化学反应裂变产物被控制在反应堆燃料元件内,同时也参与将核燃料中产生的热量传递到冷却剂中--这是核反应堆的主要目的。由于激光闪光分析等传统热特性测量技术无法解析单个 TRISO 涂层层的热特性,因此开发了一种简化的频域热反射技术,用于快速绘制 TRISO 粒子的热特性图。利用这种技术,我们绘制了从室温到 1000 °C 的 TRISO 颗粒热特性图,以研究每层内热特性的空间变化和温度依赖性。此外,还利用空间域热反射法研究了单个 TRISO 颗粒内不同位置各层热特性的各向异性,以及多个 TRISO 颗粒之间的热特性各向异性,以分别评估颗粒内和颗粒间热特性的均匀性。为了阐明所测得的热性能变化的根本原因,使用了扫描电子显微镜和拉曼光谱来检查不同涂层内微观结构和化学键的变化。然后将这项工作的结果与以前对 TRISO 燃料颗粒的研究结果进行了比较,并讨论了不同碳质层热性能测量变化的微观结构驱动机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Accelerated thermal property mapping of TRISO advanced nuclear fuel

Accelerated thermal property mapping of TRISO advanced nuclear fuel

TRistructural ISOtropic (TRISO) fuel is a leading-edge nuclear fuel form representing a departure from the more traditional nuclear fuel forms utilized in the reactor fleet of today. Rather than a monolithic fuel pellet of uranium dioxide, integral fuel forms containing TRISO fuel are composed of thousands of microencapsulated uranium-bearing fuel kernels and individually coated with multiple layers of pyrolytic carbon and silicon carbide. These multilayered ceramic coatings serve as an environmental barrier to ensure radioactive and chemically reactive fission products are contained within the reactor fuel elements, but also participate in the transfer of heat generated in the nuclear fuel to the coolant – the primary purpose of a nuclear reactor. Since traditional thermal property measurement techniques, such as laser flash analysis, would be unable to resolve the thermal properties of the individual TRISO coating layers, a simplified frequency-domain thermoreflectance technique has been developed to rapidly map the thermal properties of TRISO particles. Using this technique, the thermal properties of TRISO particles have been mapped from room temperature up to 1000 °C to examine the spatial variation and temperature-dependency of the thermal properties within each layer. Additionally, spatial-domain thermoreflectance was used to examine the anisotropy of the thermal properties for each layer at different locations within a single TRISO particle, and across multiple TRISO particles to assess the intra- and inter-particle uniformity of thermal properties, respectively. To elucidate the underlying causes for the measured variations in thermal properties, scanning electron microscopy and Raman spectroscopy were used to examine variations in microstructure and chemical bonding within the different coating layers. Results from this work are then compared with previous examinations of TRISO fuel particles and microstructurally driven mechanisms for the variations in the measured thermal properties of the different carbonaceous layers are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Advances
Materials Today Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.30
自引率
2.00%
发文量
116
审稿时长
32 days
期刊介绍: Materials Today Advances is a multi-disciplinary, open access journal that aims to connect different communities within materials science. It covers all aspects of materials science and related disciplines, including fundamental and applied research. The focus is on studies with broad impact that can cross traditional subject boundaries. The journal welcomes the submissions of articles at the forefront of materials science, advancing the field. It is part of the Materials Today family and offers authors rigorous peer review, rapid decisions, and high visibility.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信