Xiaorui Dong , Min Zha , Dawei Wang , Siqing Wang , Yajie Yang , Hailong Jia
{"title":"通过新型核壳结构 Al8Mn4Y-Al2Ca 和可控溶质偏析提高 Mg-Al-Mn-Ca-Y 稀合金的耐腐蚀性能","authors":"Xiaorui Dong , Min Zha , Dawei Wang , Siqing Wang , Yajie Yang , Hailong Jia","doi":"10.1016/j.jma.2023.10.009","DOIUrl":null,"url":null,"abstract":"<div><div>A novel core-shell structured Al<sub>8</sub>Mn<sub>4</sub>Y-Al<sub>2</sub>Ca phase and controllable solute-segregation are elaborately designed in dilute Mg-0.6Al-0.5Mn-0.1Ca-0.1Y alloy (wt.%), via incomplete peritectic transformation during twin-roll casting. When soaked in 3.5 wt.% NaCl solution, Al<sub>2</sub>Ca shell with a low electrochemical potential prevents direct contact of noble Al<sub>8</sub>Mn<sub>4</sub>Y with Mg matrix, mitigating the micro-galvanic corrosion and meanwhile accelerating the formation of uniform corrosion film. Thereafter, solute (Al, Ca)-segregation motivates the formation of heterogeneous multilayered corrosion product films, enhancing corrosion resistance and even achieving self-healing upon long-term corrosion. Notably, the dilute Mg alloy exhibits a corrosion rate as low as 0.22 ± 0.05 mm·y<sup>−1</sup>.</div></div>","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"13 1","pages":"Pages 172-192"},"PeriodicalIF":15.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing corrosion resistance of Mg-Al-Mn-Ca-Y dilute alloy via novel core-shell structured Al8Mn4Y-Al2Ca and controllable solute segregation\",\"authors\":\"Xiaorui Dong , Min Zha , Dawei Wang , Siqing Wang , Yajie Yang , Hailong Jia\",\"doi\":\"10.1016/j.jma.2023.10.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A novel core-shell structured Al<sub>8</sub>Mn<sub>4</sub>Y-Al<sub>2</sub>Ca phase and controllable solute-segregation are elaborately designed in dilute Mg-0.6Al-0.5Mn-0.1Ca-0.1Y alloy (wt.%), via incomplete peritectic transformation during twin-roll casting. When soaked in 3.5 wt.% NaCl solution, Al<sub>2</sub>Ca shell with a low electrochemical potential prevents direct contact of noble Al<sub>8</sub>Mn<sub>4</sub>Y with Mg matrix, mitigating the micro-galvanic corrosion and meanwhile accelerating the formation of uniform corrosion film. Thereafter, solute (Al, Ca)-segregation motivates the formation of heterogeneous multilayered corrosion product films, enhancing corrosion resistance and even achieving self-healing upon long-term corrosion. Notably, the dilute Mg alloy exhibits a corrosion rate as low as 0.22 ± 0.05 mm·y<sup>−1</sup>.</div></div>\",\"PeriodicalId\":16214,\"journal\":{\"name\":\"Journal of Magnesium and Alloys\",\"volume\":\"13 1\",\"pages\":\"Pages 172-192\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnesium and Alloys\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221395672300261X\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221395672300261X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Enhancing corrosion resistance of Mg-Al-Mn-Ca-Y dilute alloy via novel core-shell structured Al8Mn4Y-Al2Ca and controllable solute segregation
A novel core-shell structured Al8Mn4Y-Al2Ca phase and controllable solute-segregation are elaborately designed in dilute Mg-0.6Al-0.5Mn-0.1Ca-0.1Y alloy (wt.%), via incomplete peritectic transformation during twin-roll casting. When soaked in 3.5 wt.% NaCl solution, Al2Ca shell with a low electrochemical potential prevents direct contact of noble Al8Mn4Y with Mg matrix, mitigating the micro-galvanic corrosion and meanwhile accelerating the formation of uniform corrosion film. Thereafter, solute (Al, Ca)-segregation motivates the formation of heterogeneous multilayered corrosion product films, enhancing corrosion resistance and even achieving self-healing upon long-term corrosion. Notably, the dilute Mg alloy exhibits a corrosion rate as low as 0.22 ± 0.05 mm·y−1.
期刊介绍:
The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.