Danyelle R. Novaes, Patricia S. Sujii, Camila A. Rodrigues, Karen M. N. B. Silva, Amanda F. P. Machado, Alice K. Inoue-Nagata, Erich Y. T. Nakasu, Pedro H. B. Togni
{"title":"自然栖息地的连通性和有机管理调节害虫的传播、基因流动和天敌群落","authors":"Danyelle R. Novaes, Patricia S. Sujii, Camila A. Rodrigues, Karen M. N. B. Silva, Amanda F. P. Machado, Alice K. Inoue-Nagata, Erich Y. T. Nakasu, Pedro H. B. Togni","doi":"10.1002/eap.2938","DOIUrl":null,"url":null,"abstract":"<p>The simplification and fragmentation of agricultural landscapes generate effects on insects at multiple spatial scales. As each functional group perceives and uses the habitat differently, the response of pest insects and their associated natural enemies to environmental changes varies. Therefore, landscape structure may have consequences on gene flow among pest populations in space. This study aimed to evaluate the effects of local and landscape factors, at multiple scales, on the local infestation, gene flow and broad dispersion dynamics of the pest insect <i>Bemisia tabaci</i> (Genn.) Middle East-Asia Minor 1 (MEAM-1, former biotype B) (Hemiptera: Aleyrodidae) and its associated natural enemies in a tropical agroecosystem. We evaluated the abundance of <i>B. tabaci</i> populations and their natural enemy community in 20 tomato farms in Brazil and the gene flow between farms from 2019 to 2021. Landscapes dominated by agriculture resulted in larger <i>B. tabaci</i> populations and higher gene flow, especially in conventional farms. A higher density of native vegetation patches disfavored pest populations, regardless of the management system. The results revealed that whitefly responds to intermediate spatial scales and that landscape factors interact with management systems to modulate whitefly populations on focal farms. Conversely, whitefly natural enemies benefited from higher amounts of natural vegetation at small spatial scales, while the connectivity between natural habitat patches was beneficial for natural enemies regardless of the distance from the focal farm. The resulting dispersion model predicts that the movement of whiteflies between farms increases as the amount of natural vegetation decreases. Our findings demonstrate that landscape features, notably landscape configuration, can mediate infestation episodes, as they affect pest insects and natural enemies in opposite ways. We also showed that landscape features interact with farm traits, which highlights the need for management strategies at multiple spatial scales. In conclusion, we demonstrated the importance of the conservation of natural areas as a key strategy for area-wide ecological pest management and the relevance of organic farming to benefit natural enemy communities in tropical agroecosystems.</p>","PeriodicalId":55168,"journal":{"name":"Ecological Applications","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural habitat connectivity and organic management modulate pest dispersal, gene flow, and natural enemy communities\",\"authors\":\"Danyelle R. Novaes, Patricia S. Sujii, Camila A. Rodrigues, Karen M. N. B. Silva, Amanda F. P. Machado, Alice K. Inoue-Nagata, Erich Y. T. Nakasu, Pedro H. B. Togni\",\"doi\":\"10.1002/eap.2938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The simplification and fragmentation of agricultural landscapes generate effects on insects at multiple spatial scales. As each functional group perceives and uses the habitat differently, the response of pest insects and their associated natural enemies to environmental changes varies. Therefore, landscape structure may have consequences on gene flow among pest populations in space. This study aimed to evaluate the effects of local and landscape factors, at multiple scales, on the local infestation, gene flow and broad dispersion dynamics of the pest insect <i>Bemisia tabaci</i> (Genn.) Middle East-Asia Minor 1 (MEAM-1, former biotype B) (Hemiptera: Aleyrodidae) and its associated natural enemies in a tropical agroecosystem. We evaluated the abundance of <i>B. tabaci</i> populations and their natural enemy community in 20 tomato farms in Brazil and the gene flow between farms from 2019 to 2021. Landscapes dominated by agriculture resulted in larger <i>B. tabaci</i> populations and higher gene flow, especially in conventional farms. A higher density of native vegetation patches disfavored pest populations, regardless of the management system. The results revealed that whitefly responds to intermediate spatial scales and that landscape factors interact with management systems to modulate whitefly populations on focal farms. Conversely, whitefly natural enemies benefited from higher amounts of natural vegetation at small spatial scales, while the connectivity between natural habitat patches was beneficial for natural enemies regardless of the distance from the focal farm. The resulting dispersion model predicts that the movement of whiteflies between farms increases as the amount of natural vegetation decreases. Our findings demonstrate that landscape features, notably landscape configuration, can mediate infestation episodes, as they affect pest insects and natural enemies in opposite ways. We also showed that landscape features interact with farm traits, which highlights the need for management strategies at multiple spatial scales. In conclusion, we demonstrated the importance of the conservation of natural areas as a key strategy for area-wide ecological pest management and the relevance of organic farming to benefit natural enemy communities in tropical agroecosystems.</p>\",\"PeriodicalId\":55168,\"journal\":{\"name\":\"Ecological Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Applications\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eap.2938\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Applications","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eap.2938","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Natural habitat connectivity and organic management modulate pest dispersal, gene flow, and natural enemy communities
The simplification and fragmentation of agricultural landscapes generate effects on insects at multiple spatial scales. As each functional group perceives and uses the habitat differently, the response of pest insects and their associated natural enemies to environmental changes varies. Therefore, landscape structure may have consequences on gene flow among pest populations in space. This study aimed to evaluate the effects of local and landscape factors, at multiple scales, on the local infestation, gene flow and broad dispersion dynamics of the pest insect Bemisia tabaci (Genn.) Middle East-Asia Minor 1 (MEAM-1, former biotype B) (Hemiptera: Aleyrodidae) and its associated natural enemies in a tropical agroecosystem. We evaluated the abundance of B. tabaci populations and their natural enemy community in 20 tomato farms in Brazil and the gene flow between farms from 2019 to 2021. Landscapes dominated by agriculture resulted in larger B. tabaci populations and higher gene flow, especially in conventional farms. A higher density of native vegetation patches disfavored pest populations, regardless of the management system. The results revealed that whitefly responds to intermediate spatial scales and that landscape factors interact with management systems to modulate whitefly populations on focal farms. Conversely, whitefly natural enemies benefited from higher amounts of natural vegetation at small spatial scales, while the connectivity between natural habitat patches was beneficial for natural enemies regardless of the distance from the focal farm. The resulting dispersion model predicts that the movement of whiteflies between farms increases as the amount of natural vegetation decreases. Our findings demonstrate that landscape features, notably landscape configuration, can mediate infestation episodes, as they affect pest insects and natural enemies in opposite ways. We also showed that landscape features interact with farm traits, which highlights the need for management strategies at multiple spatial scales. In conclusion, we demonstrated the importance of the conservation of natural areas as a key strategy for area-wide ecological pest management and the relevance of organic farming to benefit natural enemy communities in tropical agroecosystems.
期刊介绍:
The pages of Ecological Applications are open to research and discussion papers that integrate ecological science and concepts with their application and implications. Of special interest are papers that develop the basic scientific principles on which environmental decision-making should rest, and those that discuss the application of ecological concepts to environmental problem solving, policy, and management. Papers that deal explicitly with policy matters are welcome. Interdisciplinary approaches are encouraged, as are short communications on emerging environmental challenges.