通过 PdH-Te 纳米酶持续释放氢气以抗炎治疗动脉粥样硬化

IF 2.7 4区 材料科学 Q3 CHEMISTRY, PHYSICAL
Min Xu, Xuan Zhang, Baowen Dong, Wenjuan Wang, Zhihuan Zhao
{"title":"通过 PdH-Te 纳米酶持续释放氢气以抗炎治疗动脉粥样硬化","authors":"Min Xu, Xuan Zhang, Baowen Dong, Wenjuan Wang, Zhihuan Zhao","doi":"10.1002/ppsc.202300135","DOIUrl":null,"url":null,"abstract":"Atherosclerosis is induced by the persistent inflammation of the arterial wall. The regulation of inflammation through active drugs can mitigate atherosclerotic lesions, but the therapeutic outcome is limited due to its insufficient efficacy and stability. Herein, a PdH-Te nanozyme with excellent reactive oxygen species (ROS) scavenging capability is designed for anti-inflammatory therapy, thereby preventing foam cell formation to alleviate atherosclerosis. As expected, the PdH-Te nanozyme shows outstanding multiple antioxidant enzyme activities and sustained hydrogen release properties. Benefiting from decreased ROS levels by enzyme catalysis, PdH-Te nanozyme significantly suppresses the pro-inflammatory cytokines for atherosclerosis treatment. Taken together, the presented results demonstrate that inhibition of inflammation based on PdH-Te nanozyme can effectively treat atherosclerosis, identifying an attractive strategy against cardiovascular diseases.","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":"53 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustained Release of Hydrogen by PdH-Te Nanozyme for Anti-Inflammatory Therapy Against Atherosclerosis\",\"authors\":\"Min Xu, Xuan Zhang, Baowen Dong, Wenjuan Wang, Zhihuan Zhao\",\"doi\":\"10.1002/ppsc.202300135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atherosclerosis is induced by the persistent inflammation of the arterial wall. The regulation of inflammation through active drugs can mitigate atherosclerotic lesions, but the therapeutic outcome is limited due to its insufficient efficacy and stability. Herein, a PdH-Te nanozyme with excellent reactive oxygen species (ROS) scavenging capability is designed for anti-inflammatory therapy, thereby preventing foam cell formation to alleviate atherosclerosis. As expected, the PdH-Te nanozyme shows outstanding multiple antioxidant enzyme activities and sustained hydrogen release properties. Benefiting from decreased ROS levels by enzyme catalysis, PdH-Te nanozyme significantly suppresses the pro-inflammatory cytokines for atherosclerosis treatment. Taken together, the presented results demonstrate that inhibition of inflammation based on PdH-Te nanozyme can effectively treat atherosclerosis, identifying an attractive strategy against cardiovascular diseases.\",\"PeriodicalId\":19903,\"journal\":{\"name\":\"Particle & Particle Systems Characterization\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particle & Particle Systems Characterization\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/ppsc.202300135\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particle & Particle Systems Characterization","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/ppsc.202300135","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

动脉壁的持续炎症会诱发动脉粥样硬化。通过活性药物调节炎症可减轻动脉粥样硬化病变,但由于药效和稳定性不足,治疗效果有限。本文设计了一种具有出色活性氧(ROS)清除能力的 PdH-Te 纳米酶,用于抗炎治疗,从而阻止泡沫细胞的形成,缓解动脉粥样硬化。正如预期的那样,PdH-Te 纳米酶具有出色的多种抗氧化酶活性和持续氢释放特性。通过酶催化降低 ROS 水平,PdH-Te 纳米酶可显著抑制促炎细胞因子,从而治疗动脉粥样硬化。综上所述,本文的研究结果表明,基于 PdH-Te 纳米酶的炎症抑制能有效治疗动脉粥样硬化,为防治心血管疾病提供了一种极具吸引力的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sustained Release of Hydrogen by PdH-Te Nanozyme for Anti-Inflammatory Therapy Against Atherosclerosis

Sustained Release of Hydrogen by PdH-Te Nanozyme for Anti-Inflammatory Therapy Against Atherosclerosis
Atherosclerosis is induced by the persistent inflammation of the arterial wall. The regulation of inflammation through active drugs can mitigate atherosclerotic lesions, but the therapeutic outcome is limited due to its insufficient efficacy and stability. Herein, a PdH-Te nanozyme with excellent reactive oxygen species (ROS) scavenging capability is designed for anti-inflammatory therapy, thereby preventing foam cell formation to alleviate atherosclerosis. As expected, the PdH-Te nanozyme shows outstanding multiple antioxidant enzyme activities and sustained hydrogen release properties. Benefiting from decreased ROS levels by enzyme catalysis, PdH-Te nanozyme significantly suppresses the pro-inflammatory cytokines for atherosclerosis treatment. Taken together, the presented results demonstrate that inhibition of inflammation based on PdH-Te nanozyme can effectively treat atherosclerosis, identifying an attractive strategy against cardiovascular diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Particle & Particle Systems Characterization
Particle & Particle Systems Characterization 工程技术-材料科学:表征与测试
CiteScore
5.50
自引率
0.00%
发文量
114
审稿时长
3.0 months
期刊介绍: Particle & Particle Systems Characterization is an international, peer-reviewed, interdisciplinary journal focusing on all aspects of particle research. The journal joined the Advanced Materials family of journals in 2013. Particle has an impact factor of 4.194 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)). Topics covered include the synthesis, characterization, and application of particles in a variety of systems and devices. Particle covers nanotubes, fullerenes, micelles and alloy clusters, organic and inorganic materials, polymers, quantum dots, 2D materials, proteins, and other molecular biological systems. Particle Systems include those in biomedicine, catalysis, energy-storage materials, environmental science, micro/nano-electromechanical systems, micro/nano-fluidics, molecular electronics, photonics, sensing, and others. Characterization methods include microscopy, spectroscopy, electrochemical, diffraction, magnetic, and scattering techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信