{"title":"数学解释:通过形式证明和概念复杂性进行分析","authors":"Francesca Poggiolesi","doi":"10.1093/philmat/nkad023","DOIUrl":null,"url":null,"abstract":"This paper studies internal (or intra-)mathematical explanations, namely those proofs of mathematical theorems that seem to explain the theorem they prove. The goal of the paper is a rigorous analysis of these explanations. This will be done in two steps. First, we will show how to move from informal proofs of mathematical theorems to a formal presentation that involves proof trees, together with a decomposition of their elements; secondly we will show that those mathematical proofs that are regarded as having explanatory power all display an increase of conceptual complexity from the assumptions to the conclusion.","PeriodicalId":49004,"journal":{"name":"Philosophia Mathematica","volume":"43 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical Explanations: An Analysis Via Formal Proofs and Conceptual Complexity\",\"authors\":\"Francesca Poggiolesi\",\"doi\":\"10.1093/philmat/nkad023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies internal (or intra-)mathematical explanations, namely those proofs of mathematical theorems that seem to explain the theorem they prove. The goal of the paper is a rigorous analysis of these explanations. This will be done in two steps. First, we will show how to move from informal proofs of mathematical theorems to a formal presentation that involves proof trees, together with a decomposition of their elements; secondly we will show that those mathematical proofs that are regarded as having explanatory power all display an increase of conceptual complexity from the assumptions to the conclusion.\",\"PeriodicalId\":49004,\"journal\":{\"name\":\"Philosophia Mathematica\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophia Mathematica\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://doi.org/10.1093/philmat/nkad023\",\"RegionNum\":1,\"RegionCategory\":\"哲学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HISTORY & PHILOSOPHY OF SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophia Mathematica","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1093/philmat/nkad023","RegionNum":1,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
Mathematical Explanations: An Analysis Via Formal Proofs and Conceptual Complexity
This paper studies internal (or intra-)mathematical explanations, namely those proofs of mathematical theorems that seem to explain the theorem they prove. The goal of the paper is a rigorous analysis of these explanations. This will be done in two steps. First, we will show how to move from informal proofs of mathematical theorems to a formal presentation that involves proof trees, together with a decomposition of their elements; secondly we will show that those mathematical proofs that are regarded as having explanatory power all display an increase of conceptual complexity from the assumptions to the conclusion.
期刊介绍:
Philosophia Mathematica is the only journal in the world devoted specifically to philosophy of mathematics. The journal publishes peer-reviewed new work in philosophy of mathematics, the application of mathematics, and computing. In addition to main articles, sometimes grouped on a single theme, there are shorter discussion notes, letters, and book reviews. The journal is published online-only, with three issues published per year.