Jiarong Qiu , Ben Zhou , Qiyue Yang , Yi Liu , Liangqing Zhang , Bingshu Wang , Shunming Song , Jingwen Zhang , Suchang Huang , Jianfeng Chen , Lu Lin , Xianhai Zeng
{"title":"在可持续磁性催化剂上高效催化糠醛和其他生物质衍生化合物的转移加氢反应","authors":"Jiarong Qiu , Ben Zhou , Qiyue Yang , Yi Liu , Liangqing Zhang , Bingshu Wang , Shunming Song , Jingwen Zhang , Suchang Huang , Jianfeng Chen , Lu Lin , Xianhai Zeng","doi":"10.1016/j.fuproc.2023.108010","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the acid-base bifunctional magnetic ZrMg@Fe<sub>3</sub>O<sub>4</sub> metallic oxide catalysts with remarkable structural properties were synthesized by the co-precipitation method for the catalytic transfer hydrogenation (CTH) of furfural (FF), ethyl levulinate (EL), and 5-methylfurfural (5-MF) to furfuryl alcohol (FFA), gamma-valerolactone (GVL), and 5-methyl-2-furanmethanol (5-MFA). Characterization results indicated that the ZrMg@Fe<sub>3</sub>O<sub>4</sub> (7: 1:1) catalyst possesses a substantial pore volume, large specific surface area, and mesoporous properties, which play an important role in improving catalytic activity. The leaching experiment indicated that the catalyst was not prone to leaching, proving its structural stability. The yield of FFA, GVL, and 5-MFA could be as high as 92.50%, 95.00%, and 53.95% by optimization experiments. The Py-FTIR, CO<sub>2</sub>-TPD, and poisoning experiments showed that Lewis acid-base sites significantly impact the catalytic activity. The catalyst can be readily isolated and retrieved from the liquid reaction mixture by applying the external magnetic field. The reaction mechanism and catalytic stability were also conducted by systematically studying the reaction experiments and physicochemical properties of the catalyst.</p></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"254 ","pages":"Article 108010"},"PeriodicalIF":7.2000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378382023003582/pdfft?md5=a2c793e2821e983aa42af018af93e702&pid=1-s2.0-S0378382023003582-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Efficient catalytic transfer hydrogenation of furfural and other biomass-derived compounds over sustainable magnetic catalyst\",\"authors\":\"Jiarong Qiu , Ben Zhou , Qiyue Yang , Yi Liu , Liangqing Zhang , Bingshu Wang , Shunming Song , Jingwen Zhang , Suchang Huang , Jianfeng Chen , Lu Lin , Xianhai Zeng\",\"doi\":\"10.1016/j.fuproc.2023.108010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, the acid-base bifunctional magnetic ZrMg@Fe<sub>3</sub>O<sub>4</sub> metallic oxide catalysts with remarkable structural properties were synthesized by the co-precipitation method for the catalytic transfer hydrogenation (CTH) of furfural (FF), ethyl levulinate (EL), and 5-methylfurfural (5-MF) to furfuryl alcohol (FFA), gamma-valerolactone (GVL), and 5-methyl-2-furanmethanol (5-MFA). Characterization results indicated that the ZrMg@Fe<sub>3</sub>O<sub>4</sub> (7: 1:1) catalyst possesses a substantial pore volume, large specific surface area, and mesoporous properties, which play an important role in improving catalytic activity. The leaching experiment indicated that the catalyst was not prone to leaching, proving its structural stability. The yield of FFA, GVL, and 5-MFA could be as high as 92.50%, 95.00%, and 53.95% by optimization experiments. The Py-FTIR, CO<sub>2</sub>-TPD, and poisoning experiments showed that Lewis acid-base sites significantly impact the catalytic activity. The catalyst can be readily isolated and retrieved from the liquid reaction mixture by applying the external magnetic field. The reaction mechanism and catalytic stability were also conducted by systematically studying the reaction experiments and physicochemical properties of the catalyst.</p></div>\",\"PeriodicalId\":326,\"journal\":{\"name\":\"Fuel Processing Technology\",\"volume\":\"254 \",\"pages\":\"Article 108010\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2023-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0378382023003582/pdfft?md5=a2c793e2821e983aa42af018af93e702&pid=1-s2.0-S0378382023003582-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel Processing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378382023003582\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378382023003582","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Efficient catalytic transfer hydrogenation of furfural and other biomass-derived compounds over sustainable magnetic catalyst
In this study, the acid-base bifunctional magnetic ZrMg@Fe3O4 metallic oxide catalysts with remarkable structural properties were synthesized by the co-precipitation method for the catalytic transfer hydrogenation (CTH) of furfural (FF), ethyl levulinate (EL), and 5-methylfurfural (5-MF) to furfuryl alcohol (FFA), gamma-valerolactone (GVL), and 5-methyl-2-furanmethanol (5-MFA). Characterization results indicated that the ZrMg@Fe3O4 (7: 1:1) catalyst possesses a substantial pore volume, large specific surface area, and mesoporous properties, which play an important role in improving catalytic activity. The leaching experiment indicated that the catalyst was not prone to leaching, proving its structural stability. The yield of FFA, GVL, and 5-MFA could be as high as 92.50%, 95.00%, and 53.95% by optimization experiments. The Py-FTIR, CO2-TPD, and poisoning experiments showed that Lewis acid-base sites significantly impact the catalytic activity. The catalyst can be readily isolated and retrieved from the liquid reaction mixture by applying the external magnetic field. The reaction mechanism and catalytic stability were also conducted by systematically studying the reaction experiments and physicochemical properties of the catalyst.
期刊介绍:
Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.