Wei-jie ZHANG , Zhi-peng TIAN , Jia-hao HUANG , Jun-yao WANG , Xiang-long LUO , Chao WANG , Ri-yang SHU , Jian-ping LIU , Ying CHEN
{"title":"金属氧化物对用于水相转化的 Pt-MOx/CeO2 催化剂上水气转化反应活性的促进作用研究","authors":"Wei-jie ZHANG , Zhi-peng TIAN , Jia-hao HUANG , Jun-yao WANG , Xiang-long LUO , Chao WANG , Ri-yang SHU , Jian-ping LIU , Ying CHEN","doi":"10.1016/S1872-5813(23)60363-9","DOIUrl":null,"url":null,"abstract":"<div><p>Aqueous phase reforming (APR) of methanol is a potential pathway for the effective hydrogen production under relatively mild conditions. The Pt/CeO<sub>2</sub> and a series of Pt-<em>M</em>O<sub><em>x</em></sub>/CeO<sub>2</sub> (<em>M</em> = Fe, Cr, Mg, Mn) catalysts were prepared by sequential impregnation method and their APR reaction performances were studied. The catalyst properties including valence state of the promoters, the amount of oxygen vacancies, the metal distributions, the adsorption properties of CO and the acidity/basicity of catalysts were characterized and analyzed by XPS, XRD, TEM, CO-TPD, NH<sub>3</sub>-TPD, CO<sub>2</sub>-TPD, etc. It was found that the addition of <em>M</em>O<sub><em>x</em></sub> weakened the Pt-CeO<sub>2</sub> interaction and promoted the generation of Pt<sup><em>δ+</em></sup> species with lower valence state, which contribute to the C–H bond cleavage and facilitate methanol conversion. The highest hydrogen production (164.78 mmol) and relatively low CO and CH<sub>4</sub> selectivities were obtained over the Pt-MgO/CeO<sub>2</sub>, while the highest CH<sub>4</sub> selectivity was obtained over the Pt-CrO<sub><em>x</em></sub>/CeO<sub>2</sub> (2.21%). Over the Pt/CeO<sub>2</sub> and Pt-<em>M</em>O<sub><em>x</em></sub>/CeO<sub>2</sub> (<em>M</em> = Fe, Cr, Mg, Mn) catalysts, CO<sub>2</sub>/CH<sub>4</sub> ratio correlated well with the catalyst basicity, indicating that the basicity promotes the dissociation adsorption of H<sub>2</sub>O as well as the water-gas shift (WGS) reaction activity and decreases the methanation activity.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"51 12","pages":"Pages 1791-1804"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the promotion effect of metal oxides on the water-gas shift reaction activity over Pt-MOx/CeO2 catalysts for aqueous phase reforming\",\"authors\":\"Wei-jie ZHANG , Zhi-peng TIAN , Jia-hao HUANG , Jun-yao WANG , Xiang-long LUO , Chao WANG , Ri-yang SHU , Jian-ping LIU , Ying CHEN\",\"doi\":\"10.1016/S1872-5813(23)60363-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aqueous phase reforming (APR) of methanol is a potential pathway for the effective hydrogen production under relatively mild conditions. The Pt/CeO<sub>2</sub> and a series of Pt-<em>M</em>O<sub><em>x</em></sub>/CeO<sub>2</sub> (<em>M</em> = Fe, Cr, Mg, Mn) catalysts were prepared by sequential impregnation method and their APR reaction performances were studied. The catalyst properties including valence state of the promoters, the amount of oxygen vacancies, the metal distributions, the adsorption properties of CO and the acidity/basicity of catalysts were characterized and analyzed by XPS, XRD, TEM, CO-TPD, NH<sub>3</sub>-TPD, CO<sub>2</sub>-TPD, etc. It was found that the addition of <em>M</em>O<sub><em>x</em></sub> weakened the Pt-CeO<sub>2</sub> interaction and promoted the generation of Pt<sup><em>δ+</em></sup> species with lower valence state, which contribute to the C–H bond cleavage and facilitate methanol conversion. The highest hydrogen production (164.78 mmol) and relatively low CO and CH<sub>4</sub> selectivities were obtained over the Pt-MgO/CeO<sub>2</sub>, while the highest CH<sub>4</sub> selectivity was obtained over the Pt-CrO<sub><em>x</em></sub>/CeO<sub>2</sub> (2.21%). Over the Pt/CeO<sub>2</sub> and Pt-<em>M</em>O<sub><em>x</em></sub>/CeO<sub>2</sub> (<em>M</em> = Fe, Cr, Mg, Mn) catalysts, CO<sub>2</sub>/CH<sub>4</sub> ratio correlated well with the catalyst basicity, indicating that the basicity promotes the dissociation adsorption of H<sub>2</sub>O as well as the water-gas shift (WGS) reaction activity and decreases the methanation activity.</p></div>\",\"PeriodicalId\":15956,\"journal\":{\"name\":\"燃料化学学报\",\"volume\":\"51 12\",\"pages\":\"Pages 1791-1804\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"燃料化学学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872581323603639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872581323603639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
Investigation of the promotion effect of metal oxides on the water-gas shift reaction activity over Pt-MOx/CeO2 catalysts for aqueous phase reforming
Aqueous phase reforming (APR) of methanol is a potential pathway for the effective hydrogen production under relatively mild conditions. The Pt/CeO2 and a series of Pt-MOx/CeO2 (M = Fe, Cr, Mg, Mn) catalysts were prepared by sequential impregnation method and their APR reaction performances were studied. The catalyst properties including valence state of the promoters, the amount of oxygen vacancies, the metal distributions, the adsorption properties of CO and the acidity/basicity of catalysts were characterized and analyzed by XPS, XRD, TEM, CO-TPD, NH3-TPD, CO2-TPD, etc. It was found that the addition of MOx weakened the Pt-CeO2 interaction and promoted the generation of Ptδ+ species with lower valence state, which contribute to the C–H bond cleavage and facilitate methanol conversion. The highest hydrogen production (164.78 mmol) and relatively low CO and CH4 selectivities were obtained over the Pt-MgO/CeO2, while the highest CH4 selectivity was obtained over the Pt-CrOx/CeO2 (2.21%). Over the Pt/CeO2 and Pt-MOx/CeO2 (M = Fe, Cr, Mg, Mn) catalysts, CO2/CH4 ratio correlated well with the catalyst basicity, indicating that the basicity promotes the dissociation adsorption of H2O as well as the water-gas shift (WGS) reaction activity and decreases the methanation activity.
期刊介绍:
Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.