{"title":"深海三硝基甲苯(TNT)爆炸的缩放规律","authors":"Junzheng Yue \n (, ), Xianqian Wu \n (, ), Chenguang Huang \n (, )","doi":"10.1007/s10409-023-23280-x","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding the dynamic characteristics of deep-sea explosions is essential to improve the survivability and combat capability of deep-sea equipment. In this paper, by considering the practical underwater conditions, we investigated the mechanical effects of the deep-sea 1-kg-trinitrotoluene (TNT) explosion with charge depths ranging from 1 to 10 km through numerical simulation and dimensional analysis. The shock wave overpressure, the positive overpressure pulse, the bubble pulse, and the energy distribution for various depth explosions were analyzed systematically. The simulation results showed that the charge depth was negligible for the peak overpressure of the shock wave. However, the positive overpressure pulse, the shock wave energy, the maximum bubble radius, the bubble energy, and the bubble period decrease significantly with increasing the charge depth. Then, the dimensional analysis for deep-sea TNT explosion was performed to reveal the key dimensionless parameters, from which the scaling laws of the shock wave overpressure and the overpressure pulse were obtained. By fitting the simulation results, the dimensionless equations were proposed, providing an effective method for predicting the peak overpressure and the positive overpressure pulse of shock wave for underwater TNT explosion over a wide range of water depths.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10409-023-23280-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Scaling law of deep-sea trinitrotoluene (TNT) explosion\",\"authors\":\"Junzheng Yue \\n (, ), Xianqian Wu \\n (, ), Chenguang Huang \\n (, )\",\"doi\":\"10.1007/s10409-023-23280-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Understanding the dynamic characteristics of deep-sea explosions is essential to improve the survivability and combat capability of deep-sea equipment. In this paper, by considering the practical underwater conditions, we investigated the mechanical effects of the deep-sea 1-kg-trinitrotoluene (TNT) explosion with charge depths ranging from 1 to 10 km through numerical simulation and dimensional analysis. The shock wave overpressure, the positive overpressure pulse, the bubble pulse, and the energy distribution for various depth explosions were analyzed systematically. The simulation results showed that the charge depth was negligible for the peak overpressure of the shock wave. However, the positive overpressure pulse, the shock wave energy, the maximum bubble radius, the bubble energy, and the bubble period decrease significantly with increasing the charge depth. Then, the dimensional analysis for deep-sea TNT explosion was performed to reveal the key dimensionless parameters, from which the scaling laws of the shock wave overpressure and the overpressure pulse were obtained. By fitting the simulation results, the dimensionless equations were proposed, providing an effective method for predicting the peak overpressure and the positive overpressure pulse of shock wave for underwater TNT explosion over a wide range of water depths.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7109,\"journal\":{\"name\":\"Acta Mechanica Sinica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10409-023-23280-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10409-023-23280-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-023-23280-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Scaling law of deep-sea trinitrotoluene (TNT) explosion
Understanding the dynamic characteristics of deep-sea explosions is essential to improve the survivability and combat capability of deep-sea equipment. In this paper, by considering the practical underwater conditions, we investigated the mechanical effects of the deep-sea 1-kg-trinitrotoluene (TNT) explosion with charge depths ranging from 1 to 10 km through numerical simulation and dimensional analysis. The shock wave overpressure, the positive overpressure pulse, the bubble pulse, and the energy distribution for various depth explosions were analyzed systematically. The simulation results showed that the charge depth was negligible for the peak overpressure of the shock wave. However, the positive overpressure pulse, the shock wave energy, the maximum bubble radius, the bubble energy, and the bubble period decrease significantly with increasing the charge depth. Then, the dimensional analysis for deep-sea TNT explosion was performed to reveal the key dimensionless parameters, from which the scaling laws of the shock wave overpressure and the overpressure pulse were obtained. By fitting the simulation results, the dimensionless equations were proposed, providing an effective method for predicting the peak overpressure and the positive overpressure pulse of shock wave for underwater TNT explosion over a wide range of water depths.
期刊介绍:
Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences.
Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences.
In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest.
Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics