Muhammad Usman, Muhammad Atiq, Nasir Ahmed Rajput, Shahbaz Talib Sahi, Mohsin Shad, Nian Lili, Shahid Iqbal, Asif Mahmood Arif, Usama Ahmad, Khurram Shehzad Khan, Muhammad Asif, Fasih Ullah Haider
{"title":"绿色合成银基纳米材料对 Alternaria solani 引起的番茄早疫病的功效","authors":"Muhammad Usman, Muhammad Atiq, Nasir Ahmed Rajput, Shahbaz Talib Sahi, Mohsin Shad, Nian Lili, Shahid Iqbal, Asif Mahmood Arif, Usama Ahmad, Khurram Shehzad Khan, Muhammad Asif, Fasih Ullah Haider","doi":"10.1007/s10343-023-00957-7","DOIUrl":null,"url":null,"abstract":"<p>Tomato production is significantly harmed by the interruption of fungal pathogens, i.e., <i>Alternaria solani</i>, the causal agent of early blight, which is responsible for substantial yield losses in tomato crops. In recent years, the application of silver-based green synthesized nanomaterials (AgNMs) has been documented as the best performer against various plant diseases. However, the knowledge about applying green-synthesized AgNMs for the management of early blight and its impact on the components of the antioxidant defense system, especially in tomatoes, still needs to be discovered. Therefore, in the current study, two green synthesized viz. wild gourd (<i>Citrullus colocynthis</i>) and rough cocklebur (<i>Xanthium strumarium</i>) AgNMs were applied at three different concentrations to check their efficacy against the early blight of tomatoes and the components of the antioxidant defense system of tomato plants. Results revealed that <i>C. colocynthis-</i>based AgNMs were found to be most effective and exhibited disease incidence of <i>A. solani</i> (22%) with a significant increase in tomato production (13%) along with the number of fruits/plants. Moreover, application of <i>C. colocynthis-</i>based AgNMs improved the concentration of ascorbic acid (1240, 997 µg/mL), total phenolic contents (950, 800 µg/mL), flavonoids (111, 88 mg/g), hydrogen peroxide (0.0013, 0.001 U/mg), amylase (110, 89 U/mL), chlorophyll <i>a</i> (0.31, 0.25 mg/g), chlorophyll <i>b</i> (0.22, 0.16 mg/g), and total chlorophyll (0.61, 0.50 mg/g) in treated plants of resistant and susceptible varieties of tomato respectively, than that of control. It is concluded that applying green synthesized AgNMs may be a viable alternative to synthetic chemicals for managing the early blight of tomatoes.</p>","PeriodicalId":12580,"journal":{"name":"Gesunde Pflanzen","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficacy of Green Synthesized Silver Based Nanomaterials Against Early Blight of Tomato Caused by Alternaria solani\",\"authors\":\"Muhammad Usman, Muhammad Atiq, Nasir Ahmed Rajput, Shahbaz Talib Sahi, Mohsin Shad, Nian Lili, Shahid Iqbal, Asif Mahmood Arif, Usama Ahmad, Khurram Shehzad Khan, Muhammad Asif, Fasih Ullah Haider\",\"doi\":\"10.1007/s10343-023-00957-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Tomato production is significantly harmed by the interruption of fungal pathogens, i.e., <i>Alternaria solani</i>, the causal agent of early blight, which is responsible for substantial yield losses in tomato crops. In recent years, the application of silver-based green synthesized nanomaterials (AgNMs) has been documented as the best performer against various plant diseases. However, the knowledge about applying green-synthesized AgNMs for the management of early blight and its impact on the components of the antioxidant defense system, especially in tomatoes, still needs to be discovered. Therefore, in the current study, two green synthesized viz. wild gourd (<i>Citrullus colocynthis</i>) and rough cocklebur (<i>Xanthium strumarium</i>) AgNMs were applied at three different concentrations to check their efficacy against the early blight of tomatoes and the components of the antioxidant defense system of tomato plants. Results revealed that <i>C. colocynthis-</i>based AgNMs were found to be most effective and exhibited disease incidence of <i>A. solani</i> (22%) with a significant increase in tomato production (13%) along with the number of fruits/plants. Moreover, application of <i>C. colocynthis-</i>based AgNMs improved the concentration of ascorbic acid (1240, 997 µg/mL), total phenolic contents (950, 800 µg/mL), flavonoids (111, 88 mg/g), hydrogen peroxide (0.0013, 0.001 U/mg), amylase (110, 89 U/mL), chlorophyll <i>a</i> (0.31, 0.25 mg/g), chlorophyll <i>b</i> (0.22, 0.16 mg/g), and total chlorophyll (0.61, 0.50 mg/g) in treated plants of resistant and susceptible varieties of tomato respectively, than that of control. It is concluded that applying green synthesized AgNMs may be a viable alternative to synthetic chemicals for managing the early blight of tomatoes.</p>\",\"PeriodicalId\":12580,\"journal\":{\"name\":\"Gesunde Pflanzen\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gesunde Pflanzen\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10343-023-00957-7\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gesunde Pflanzen","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10343-023-00957-7","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Efficacy of Green Synthesized Silver Based Nanomaterials Against Early Blight of Tomato Caused by Alternaria solani
Tomato production is significantly harmed by the interruption of fungal pathogens, i.e., Alternaria solani, the causal agent of early blight, which is responsible for substantial yield losses in tomato crops. In recent years, the application of silver-based green synthesized nanomaterials (AgNMs) has been documented as the best performer against various plant diseases. However, the knowledge about applying green-synthesized AgNMs for the management of early blight and its impact on the components of the antioxidant defense system, especially in tomatoes, still needs to be discovered. Therefore, in the current study, two green synthesized viz. wild gourd (Citrullus colocynthis) and rough cocklebur (Xanthium strumarium) AgNMs were applied at three different concentrations to check their efficacy against the early blight of tomatoes and the components of the antioxidant defense system of tomato plants. Results revealed that C. colocynthis-based AgNMs were found to be most effective and exhibited disease incidence of A. solani (22%) with a significant increase in tomato production (13%) along with the number of fruits/plants. Moreover, application of C. colocynthis-based AgNMs improved the concentration of ascorbic acid (1240, 997 µg/mL), total phenolic contents (950, 800 µg/mL), flavonoids (111, 88 mg/g), hydrogen peroxide (0.0013, 0.001 U/mg), amylase (110, 89 U/mL), chlorophyll a (0.31, 0.25 mg/g), chlorophyll b (0.22, 0.16 mg/g), and total chlorophyll (0.61, 0.50 mg/g) in treated plants of resistant and susceptible varieties of tomato respectively, than that of control. It is concluded that applying green synthesized AgNMs may be a viable alternative to synthetic chemicals for managing the early blight of tomatoes.
期刊介绍:
Gesunde Pflanzen publiziert praxisbezogene Beiträge zum Pflanzenschutz in Landwirtschaft, Forstwirtschaft, Gartenbau und öffentlichem Grün und seinen Bezügen zum Umwelt- und Verbraucherschutz sowie zu Rechtsfragen.
Das Themenspektrum reicht von der Bestimmung der Schadorganismen über Maßnahmen und Verfahren zur Minderung des Befallsrisikos bis hin zur Entwicklung und Anwendung nicht-chemischer und chemischer Bekämpfungsstrategien und -verfahren, aber auch zu Fragen der Auswirkungen des Pflanzenschutzes auf die Umwelt, die Sicherung der Ernährung sowie zu allgemeinen Fragen wie Nutzen und Risiken und zur Entwicklung neuer Technologien.
Jedes Heft enthält Originalbeiträge renommierter Wissenschaftler, aktuelle Informationen von Verbänden sowie aus der Industrie, Pressemitteilungen und Personalia.
Damit bietet die Zeitschrift vor allem Behörden und Anwendern im Agrarsektor und Verbraucherschutz fundierte Praxisunterstützung auf wissenschaftlichem Niveau.