低温循环对碳纤维增强聚酰亚胺复合材料界面微观力学影响的拉曼图谱微谱分析

IF 5.7 3区 材料科学 Q2 Materials Science
Li-shuang Jia , Qi-lin Wu , Hui-fang Chen
{"title":"低温循环对碳纤维增强聚酰亚胺复合材料界面微观力学影响的拉曼图谱微谱分析","authors":"Li-shuang Jia ,&nbsp;Qi-lin Wu ,&nbsp;Hui-fang Chen","doi":"10.1016/S1872-5805(23)60712-7","DOIUrl":null,"url":null,"abstract":"<div><p>Raman mapping microspectroscopy was then used to investigate the interfacial stress distributions of the films during different cryogenic-room temperature cycles (-198-25 °C, 0-300 cycles). It was found that the micro stress of CNT-PI films (around 175 MPa) had no significant changes even after 300 cycles. The cryogenic cycling had very little effect on the internal stress, indicating that PI had a good low temperature resistance. For the CF/CNT-PI films, the micro stress distributions of CFs, interface, and matrix regions were successfully obtained. It was found that the CFs bear a greater stress than the matrix, showing that CFs had always been the major stress bearer, confirming the strengthening effect of CFs. When the CF/CNT-PI films were cycled fewer than 250 times, the effect of cryogenic cycling on the micro stress was insignificant. But once the number of cycles reached 300, the compressive stresses on the fiber and interface increased by 21% and 12.9%, respectively, implying a deterioration of the mechanical properties. By Raman mapping, the micro-mechanical distributions of the reinforced material, matrix and interface of the composites under cyclic temperature changes were effectively quantified. This is therefore an effective method for evaluating the safety of composite materials.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"38 6","pages":"Pages 1135-1142"},"PeriodicalIF":5.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Raman mapping microspectroscopy of the effects of cryogenic cycling on the interfacial micromechanics of carbon fiber-reinforced polyimide composites\",\"authors\":\"Li-shuang Jia ,&nbsp;Qi-lin Wu ,&nbsp;Hui-fang Chen\",\"doi\":\"10.1016/S1872-5805(23)60712-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Raman mapping microspectroscopy was then used to investigate the interfacial stress distributions of the films during different cryogenic-room temperature cycles (-198-25 °C, 0-300 cycles). It was found that the micro stress of CNT-PI films (around 175 MPa) had no significant changes even after 300 cycles. The cryogenic cycling had very little effect on the internal stress, indicating that PI had a good low temperature resistance. For the CF/CNT-PI films, the micro stress distributions of CFs, interface, and matrix regions were successfully obtained. It was found that the CFs bear a greater stress than the matrix, showing that CFs had always been the major stress bearer, confirming the strengthening effect of CFs. When the CF/CNT-PI films were cycled fewer than 250 times, the effect of cryogenic cycling on the micro stress was insignificant. But once the number of cycles reached 300, the compressive stresses on the fiber and interface increased by 21% and 12.9%, respectively, implying a deterioration of the mechanical properties. By Raman mapping, the micro-mechanical distributions of the reinforced material, matrix and interface of the composites under cyclic temperature changes were effectively quantified. This is therefore an effective method for evaluating the safety of composite materials.</p></div>\",\"PeriodicalId\":19719,\"journal\":{\"name\":\"New Carbon Materials\",\"volume\":\"38 6\",\"pages\":\"Pages 1135-1142\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Carbon Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872580523607127\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580523607127","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

然后,利用拉曼图谱微光谱技术研究了薄膜在不同低温-室温循环(-198-25 °C,0-300 个循环)过程中的界面应力分布。结果发现,即使经过 300 次循环,CNT-PI 薄膜的微应力(约 175 兆帕)也没有发生显著变化。低温循环对内应力的影响很小,这表明 PI 具有良好的耐低温性能。对于 CF/CNT-PI 薄膜,成功获得了 CF、界面和基体区域的微观应力分布。结果发现,CFs 承受的应力大于基体,表明 CFs 始终是主要的应力承受者,证实了 CFs 的强化作用。当 CF/CNT-PI 薄膜循环次数少于 250 次时,低温循环对微应力的影响不明显。但当循环次数达到 300 次时,纤维和界面上的压应力分别增加了 21% 和 12.9%,这意味着机械性能有所下降。通过拉曼图谱,复合材料的增强材料、基体和界面在循环温度变化下的微观力学分布得到了有效量化。因此,这是一种评估复合材料安全性的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Raman mapping microspectroscopy of the effects of cryogenic cycling on the interfacial micromechanics of carbon fiber-reinforced polyimide composites

Raman mapping microspectroscopy was then used to investigate the interfacial stress distributions of the films during different cryogenic-room temperature cycles (-198-25 °C, 0-300 cycles). It was found that the micro stress of CNT-PI films (around 175 MPa) had no significant changes even after 300 cycles. The cryogenic cycling had very little effect on the internal stress, indicating that PI had a good low temperature resistance. For the CF/CNT-PI films, the micro stress distributions of CFs, interface, and matrix regions were successfully obtained. It was found that the CFs bear a greater stress than the matrix, showing that CFs had always been the major stress bearer, confirming the strengthening effect of CFs. When the CF/CNT-PI films were cycled fewer than 250 times, the effect of cryogenic cycling on the micro stress was insignificant. But once the number of cycles reached 300, the compressive stresses on the fiber and interface increased by 21% and 12.9%, respectively, implying a deterioration of the mechanical properties. By Raman mapping, the micro-mechanical distributions of the reinforced material, matrix and interface of the composites under cyclic temperature changes were effectively quantified. This is therefore an effective method for evaluating the safety of composite materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Carbon Materials
New Carbon Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.10
自引率
8.80%
发文量
3245
审稿时长
5.5 months
期刊介绍: New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信