Caffarelli-Kohn-Nirenberg 等式、不等式及其稳定性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Cristian Cazacu , Joshua Flynn , Nguyen Lam , Guozhen Lu
{"title":"Caffarelli-Kohn-Nirenberg 等式、不等式及其稳定性","authors":"Cristian Cazacu ,&nbsp;Joshua Flynn ,&nbsp;Nguyen Lam ,&nbsp;Guozhen Lu","doi":"10.1016/j.matpur.2023.12.007","DOIUrl":null,"url":null,"abstract":"<div><p><span>We set up a one-parameter family of inequalities that contains both the Hardy inequalities (when the parameter is 1) and the Caffarelli-Kohn-Nirenberg inequalities (when the parameter is optimal). Moreover, we study these results with the exact remainders to provide direct understandings to the sharp constants, as well as the existence and non-existence of the optimizers of the Hardy inequalities and Caffarelli-Kohn-Nirenberg inequalities. As an application of our identities, we establish some sharp versions with optimal constants and theirs attainability of the stability of the Heisenberg Uncertainty Principle and several stability results of the Caffarelli-Kohn-Nirenberg inequalities (see </span><span>Theorem 1.1</span>). In particular, for the stability of the Heisenberg uncertainty principle, we introduced a new deficit function <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo></math></span> and established the best constant for the stability inequality (see <span>Theorem 1.2</span>) which also leads to the stability inequality with sharp constant with respect to the deficit function <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo></math></span> and improved the known stability result for <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo></math></span> in the literature. (see <span>Theorem 1.3</span>). A sharp stability inequality for the non-scale invariant Heisenberg uncertainty principle with optimal constant is also obtained in <span>Theorem 1.4</span>.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Caffarelli-Kohn-Nirenberg identities, inequalities and their stabilities\",\"authors\":\"Cristian Cazacu ,&nbsp;Joshua Flynn ,&nbsp;Nguyen Lam ,&nbsp;Guozhen Lu\",\"doi\":\"10.1016/j.matpur.2023.12.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We set up a one-parameter family of inequalities that contains both the Hardy inequalities (when the parameter is 1) and the Caffarelli-Kohn-Nirenberg inequalities (when the parameter is optimal). Moreover, we study these results with the exact remainders to provide direct understandings to the sharp constants, as well as the existence and non-existence of the optimizers of the Hardy inequalities and Caffarelli-Kohn-Nirenberg inequalities. As an application of our identities, we establish some sharp versions with optimal constants and theirs attainability of the stability of the Heisenberg Uncertainty Principle and several stability results of the Caffarelli-Kohn-Nirenberg inequalities (see </span><span>Theorem 1.1</span>). In particular, for the stability of the Heisenberg uncertainty principle, we introduced a new deficit function <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo></math></span> and established the best constant for the stability inequality (see <span>Theorem 1.2</span>) which also leads to the stability inequality with sharp constant with respect to the deficit function <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo></math></span> and improved the known stability result for <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo></math></span> in the literature. (see <span>Theorem 1.3</span>). A sharp stability inequality for the non-scale invariant Heisenberg uncertainty principle with optimal constant is also obtained in <span>Theorem 1.4</span>.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782423001587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423001587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了一个一参数不等式族,其中包含哈代不等式(当参数为 1 时)和卡法雷利-科恩-尼伦堡不等式(当参数为最优时)。此外,我们用精确余数来研究这些结果,以便直接理解尖锐常数,以及哈代不等式和卡法雷利-科恩-尼伦伯格不等式的优化子的存在与否。作为我们的特性的应用,我们建立了一些具有最优常数的尖锐版本,以及海森堡不确定性原理的稳定性和 Caffarelli-Kohn-Nirenberg 不等式的几个稳定性结果(见定理 1.1)。特别是,对于海森堡不确定性原理的稳定性,我们引入了一个新的亏损函数 δ1(u),并建立了稳定性不等式的最佳常数(见定理 1.2),这也导致了关于亏损函数 δ2(u)的具有尖锐常数的稳定性不等式,并改进了文献中已知的 δ2(u)的稳定性结果。(见定理 1.3)。定理 1.4 还得到了具有最优常数的非尺度不变海森堡不确定性原理的尖锐稳定性不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Caffarelli-Kohn-Nirenberg identities, inequalities and their stabilities

We set up a one-parameter family of inequalities that contains both the Hardy inequalities (when the parameter is 1) and the Caffarelli-Kohn-Nirenberg inequalities (when the parameter is optimal). Moreover, we study these results with the exact remainders to provide direct understandings to the sharp constants, as well as the existence and non-existence of the optimizers of the Hardy inequalities and Caffarelli-Kohn-Nirenberg inequalities. As an application of our identities, we establish some sharp versions with optimal constants and theirs attainability of the stability of the Heisenberg Uncertainty Principle and several stability results of the Caffarelli-Kohn-Nirenberg inequalities (see Theorem 1.1). In particular, for the stability of the Heisenberg uncertainty principle, we introduced a new deficit function δ1(u) and established the best constant for the stability inequality (see Theorem 1.2) which also leads to the stability inequality with sharp constant with respect to the deficit function δ2(u) and improved the known stability result for δ2(u) in the literature. (see Theorem 1.3). A sharp stability inequality for the non-scale invariant Heisenberg uncertainty principle with optimal constant is also obtained in Theorem 1.4.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信