{"title":"退化/奇异全非线性抛物方程解的 C1,α-规则性","authors":"Ki-Ahm Lee , Se-Chan Lee , Hyungsung Yun","doi":"10.1016/j.matpur.2023.12.002","DOIUrl":null,"url":null,"abstract":"<div><p>We establish the interior <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span><span>-estimate for viscosity solutions<span> of degenerate/singular fully nonlinear parabolic equations</span></span><span><span><span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>|</mo><mi>D</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>γ</mi></mrow></msup><mi>F</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo><mo>+</mo><mi>f</mi><mspace></mspace><mtext>in </mtext><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo></math></span></span></span> where <span><math><mi>γ</mi><mo>></mo><mo>−</mo><mn>1</mn></math></span> and <span><math><mi>f</mi><mo>∈</mo><mi>C</mi><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>∩</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span>. For this purpose, we prove the well-posedness of the regularized Cauchy-Dirichlet problem<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub></mtd><mtd><mo>=</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mo>|</mo><mi>D</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>γ</mi><mo>/</mo><mn>2</mn></mrow></msup><mi>F</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo></mtd><mtd><mspace></mspace></mtd><mtd><mrow><mtext>in </mtext><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mtd></mtr><mtr><mtd><mi>u</mi></mtd><mtd><mo>=</mo><mi>φ</mi></mtd><mtd><mspace></mspace></mtd><mtd><mrow><mtext>on </mtext><msub><mrow><mo>∂</mo></mrow><mrow><mi>p</mi></mrow></msub><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>γ</mi><mo>></mo><mo>−</mo><mn>2</mn></math></span>. Our approach utilizes the Bernstein method with approximations in view of the difference quotient.</p></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"181 ","pages":"Pages 152-189"},"PeriodicalIF":2.1000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"C1,α-regularity for solutions of degenerate/singular fully nonlinear parabolic equations\",\"authors\":\"Ki-Ahm Lee , Se-Chan Lee , Hyungsung Yun\",\"doi\":\"10.1016/j.matpur.2023.12.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We establish the interior <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span><span>-estimate for viscosity solutions<span> of degenerate/singular fully nonlinear parabolic equations</span></span><span><span><span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>|</mo><mi>D</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>γ</mi></mrow></msup><mi>F</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo><mo>+</mo><mi>f</mi><mspace></mspace><mtext>in </mtext><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo></math></span></span></span> where <span><math><mi>γ</mi><mo>></mo><mo>−</mo><mn>1</mn></math></span> and <span><math><mi>f</mi><mo>∈</mo><mi>C</mi><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>∩</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span>. For this purpose, we prove the well-posedness of the regularized Cauchy-Dirichlet problem<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub></mtd><mtd><mo>=</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mo>|</mo><mi>D</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>γ</mi><mo>/</mo><mn>2</mn></mrow></msup><mi>F</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo></mtd><mtd><mspace></mspace></mtd><mtd><mrow><mtext>in </mtext><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mtd></mtr><mtr><mtd><mi>u</mi></mtd><mtd><mo>=</mo><mi>φ</mi></mtd><mtd><mspace></mspace></mtd><mtd><mrow><mtext>on </mtext><msub><mrow><mo>∂</mo></mrow><mrow><mi>p</mi></mrow></msub><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>γ</mi><mo>></mo><mo>−</mo><mn>2</mn></math></span>. Our approach utilizes the Bernstein method with approximations in view of the difference quotient.</p></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"181 \",\"pages\":\"Pages 152-189\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782423001538\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423001538","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
C1,α-regularity for solutions of degenerate/singular fully nonlinear parabolic equations
We establish the interior -estimate for viscosity solutions of degenerate/singular fully nonlinear parabolic equations where and . For this purpose, we prove the well-posedness of the regularized Cauchy-Dirichlet problem where . Our approach utilizes the Bernstein method with approximations in view of the difference quotient.
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.