放射球孢子菌中 DNA 回旋酶和拓扑异构酶 IB 在 DNA 损伤时的细胞定位差异

IF 2.6 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Shruti Mishra, Himani Tewari, Reema Chaudhary, Hari S.Misra, Swathi Kota
{"title":"放射球孢子菌中 DNA 回旋酶和拓扑异构酶 IB 在 DNA 损伤时的细胞定位差异","authors":"Shruti Mishra, Himani Tewari, Reema Chaudhary, Hari S.Misra, Swathi Kota","doi":"10.1007/s00792-023-01323-1","DOIUrl":null,"url":null,"abstract":"<p>Topoisomerases are crucial enzymes in genome maintenance that modulate the topological changes during DNA metabolism. <i>Deinococcus radiodurans</i>, a Gram-positive bacterium is characterized by its resistance to many abiotic stresses including gamma radiation. Its multipartite genome encodes both type I and type II topoisomerases. Time-lapse studies using fluorescently tagged topoisomerase IB (drTopoIB-RFP) and DNA gyrase (GyrA-RFP) were performed to check the dynamics and localization with respect to DNA repair and cell division under normal and post-irradiation growth conditions. Results suggested that TopoIB and DNA gyrase are mostly found on nucleoid, highly dynamic, and show growth phase-dependent subcellular localization. The drTopoIB-RFP was also present at peripheral and septum regions but does not co-localize with the cell division protein, drFtsZ. On the other hand, DNA gyrase co-localizes with PprA a pleiotropic protein involved in radioresistance, on the nucleoid during the post-irradiation recovery (PIR). The <i>topoIB</i> mutant was found to be sensitive to hydroxyurea treatment, and showed more accumulation of single-stranded DNA during the PIR, compared to the wild type suggesting its role in DNA replication stress. Together, these results suggest differential localization of drTopoIB-RFP and GyrA-RFP in <i>D. radiodurans</i> and their interaction with PprA protein, emphasizing the functional significance and role in radioresistance.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":"17 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential cellular localization of DNA gyrase and topoisomerase IB in response to DNA damage in Deinococcus radiodurans\",\"authors\":\"Shruti Mishra, Himani Tewari, Reema Chaudhary, Hari S.Misra, Swathi Kota\",\"doi\":\"10.1007/s00792-023-01323-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Topoisomerases are crucial enzymes in genome maintenance that modulate the topological changes during DNA metabolism. <i>Deinococcus radiodurans</i>, a Gram-positive bacterium is characterized by its resistance to many abiotic stresses including gamma radiation. Its multipartite genome encodes both type I and type II topoisomerases. Time-lapse studies using fluorescently tagged topoisomerase IB (drTopoIB-RFP) and DNA gyrase (GyrA-RFP) were performed to check the dynamics and localization with respect to DNA repair and cell division under normal and post-irradiation growth conditions. Results suggested that TopoIB and DNA gyrase are mostly found on nucleoid, highly dynamic, and show growth phase-dependent subcellular localization. The drTopoIB-RFP was also present at peripheral and septum regions but does not co-localize with the cell division protein, drFtsZ. On the other hand, DNA gyrase co-localizes with PprA a pleiotropic protein involved in radioresistance, on the nucleoid during the post-irradiation recovery (PIR). The <i>topoIB</i> mutant was found to be sensitive to hydroxyurea treatment, and showed more accumulation of single-stranded DNA during the PIR, compared to the wild type suggesting its role in DNA replication stress. Together, these results suggest differential localization of drTopoIB-RFP and GyrA-RFP in <i>D. radiodurans</i> and their interaction with PprA protein, emphasizing the functional significance and role in radioresistance.</p>\",\"PeriodicalId\":12302,\"journal\":{\"name\":\"Extremophiles\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extremophiles\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00792-023-01323-1\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extremophiles","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00792-023-01323-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

拓扑异构酶是维护基因组的关键酶,可调节 DNA 新陈代谢过程中的拓扑变化。辐射球菌(Deinococcus radiodurans)是一种革兰氏阳性细菌,其特点是能抵抗包括伽马射线在内的多种非生物压力。它的多部分基因组同时编码 I 型和 II 型拓扑异构酶。研究人员利用荧光标记的拓扑异构酶 IB(drTopoIB-RFP)和 DNA 回旋酶(GyrA-RFP)进行了延时研究,以检测正常和辐照后生长条件下 DNA 修复和细胞分裂的动态和定位。结果表明,TopoIB和DNA回旋酶主要存在于核仁上,具有高度动态性,并表现出生长期依赖性亚细胞定位。drTopoIB-RFP 也存在于外周和隔膜区域,但不与细胞分裂蛋白 drFtsZ 共定位。另一方面,在辐照后恢复期(PIR),DNA 回旋酶与 PprA(一种参与放射抗性的多向蛋白)共定位在核仁上。与野生型相比,topoIB突变体对羟基脲处理敏感,并在PIR期间显示出更多的单链DNA积累,这表明它在DNA复制应激中的作用。总之,这些结果表明了 drTopoIB-RFP 和 GyrA-RFP 在 D. radiodurans 中的不同定位及其与 PprA 蛋白的相互作用,强调了它们在抗辐射中的功能意义和作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Differential cellular localization of DNA gyrase and topoisomerase IB in response to DNA damage in Deinococcus radiodurans

Differential cellular localization of DNA gyrase and topoisomerase IB in response to DNA damage in Deinococcus radiodurans

Topoisomerases are crucial enzymes in genome maintenance that modulate the topological changes during DNA metabolism. Deinococcus radiodurans, a Gram-positive bacterium is characterized by its resistance to many abiotic stresses including gamma radiation. Its multipartite genome encodes both type I and type II topoisomerases. Time-lapse studies using fluorescently tagged topoisomerase IB (drTopoIB-RFP) and DNA gyrase (GyrA-RFP) were performed to check the dynamics and localization with respect to DNA repair and cell division under normal and post-irradiation growth conditions. Results suggested that TopoIB and DNA gyrase are mostly found on nucleoid, highly dynamic, and show growth phase-dependent subcellular localization. The drTopoIB-RFP was also present at peripheral and septum regions but does not co-localize with the cell division protein, drFtsZ. On the other hand, DNA gyrase co-localizes with PprA a pleiotropic protein involved in radioresistance, on the nucleoid during the post-irradiation recovery (PIR). The topoIB mutant was found to be sensitive to hydroxyurea treatment, and showed more accumulation of single-stranded DNA during the PIR, compared to the wild type suggesting its role in DNA replication stress. Together, these results suggest differential localization of drTopoIB-RFP and GyrA-RFP in D. radiodurans and their interaction with PprA protein, emphasizing the functional significance and role in radioresistance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Extremophiles
Extremophiles 生物-生化与分子生物学
CiteScore
6.80
自引率
6.90%
发文量
28
审稿时长
2 months
期刊介绍: Extremophiles features original research articles, reviews, and method papers on the biology, molecular biology, structure, function, and applications of microbial life at high or low temperature, pressure, acidity, alkalinity, salinity, or desiccation; or in the presence of organic solvents, heavy metals, normally toxic substances, or radiation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信