2012-2021 年奥布宁斯克平流层气溶胶激光雷达观测:火山爆发和生物质燃烧的影响

Pub Date : 2023-12-08 DOI:10.1134/s0001433823140104
V. A. Korshunov
{"title":"2012-2021 年奥布宁斯克平流层气溶胶激光雷达观测:火山爆发和生物质燃烧的影响","authors":"V. A. Korshunov","doi":"10.1134/s0001433823140104","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Results of lidar observations at a wavelength of 532 nm in Obninsk over the period from 2012 to 2021 are presented. In 2014–2018 the stratosphere aerosol was in a state close to the background. In 2019, aerosol maxima were observed in the 15–30 km layer associated with the eruptions of the Ambae and Raikoke volcanoes. The seasonal behavior of the integral backscattering coefficient in the background period is presented. In the lower layer of the stratosphere of 13–23 km, an increase in backscattering was observed in the second half of the year, associated with an increase in the number of natural fires. In the 23–30 km layer, the maximum backscattering was observed in summer. It was found that the contribution of the lower layer of 10–15 km to the optical thickness of the entire layer of 10–30 km is on average 61%. This implies the need to take into account the aerosol of the lower layer of 10–15 km in the overall balance of stratospheric aerosol in chemical–climatic models of the stratosphere. In the second half of the year, aerosol of natural fires is often observed in the 10–15 km layer. In some episodes, the addition of natural fire aerosol to an optical layer thickness of 10–30 km with respect to the spherical sulfuric acid aerosol ranges from 50 to 150%. At the same time, in annual mean terms, this additive in 2014–2021 on average was only 10%. In the last 5 years, there has been a trend towards an increase in the content of aerosol from natural fires, but so far the content of sulfate aerosol in the stratosphere remains predominant.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Lidar Observations of Stratospheric Aerosols in Obninsk in 2012–2021: Influence of Volcanic Eruptions and Biomass Burning\",\"authors\":\"V. A. Korshunov\",\"doi\":\"10.1134/s0001433823140104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Results of lidar observations at a wavelength of 532 nm in Obninsk over the period from 2012 to 2021 are presented. In 2014–2018 the stratosphere aerosol was in a state close to the background. In 2019, aerosol maxima were observed in the 15–30 km layer associated with the eruptions of the Ambae and Raikoke volcanoes. The seasonal behavior of the integral backscattering coefficient in the background period is presented. In the lower layer of the stratosphere of 13–23 km, an increase in backscattering was observed in the second half of the year, associated with an increase in the number of natural fires. In the 23–30 km layer, the maximum backscattering was observed in summer. It was found that the contribution of the lower layer of 10–15 km to the optical thickness of the entire layer of 10–30 km is on average 61%. This implies the need to take into account the aerosol of the lower layer of 10–15 km in the overall balance of stratospheric aerosol in chemical–climatic models of the stratosphere. In the second half of the year, aerosol of natural fires is often observed in the 10–15 km layer. In some episodes, the addition of natural fire aerosol to an optical layer thickness of 10–30 km with respect to the spherical sulfuric acid aerosol ranges from 50 to 150%. At the same time, in annual mean terms, this additive in 2014–2021 on average was only 10%. In the last 5 years, there has been a trend towards an increase in the content of aerosol from natural fires, but so far the content of sulfate aerosol in the stratosphere remains predominant.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1134/s0001433823140104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1134/s0001433823140104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要介绍了2012年至2021年期间在奥布宁斯克进行的波长为532 nm的激光雷达观测结果。2014-2018年,平流层气溶胶处于接近本底的状态。2019年,在15-30千米层观测到了与安贝火山和雷科克火山喷发相关的气溶胶最大值。介绍了背景时期积分后向散射系数的季节性变化。在 13-23 千米的平流层下层,观测到下半年后向散射增加,这与自然火灾数量增加有关。在 23-30 千米层,夏季的反向散射最大。研究发现,10-15 千米低层对整个 10-30 千米层光学厚度的贡献率平均为 61%。这意味着在平流层化学-气候模型的平流层气溶胶总体平衡中需要考虑 10-15 千米低层的气溶胶。在下半年,10-15 公里层经常观测到自然火灾气溶胶。在某些情况下,相对于球形硫酸气溶胶,10-30 千米光学层厚度的自然火气溶胶增加了 50%到 150%。同时,按年均值计算,2014-2021 年的这一附加值平均仅为 10%。在过去 5 年中,自然火灾产生的气溶胶含量有增加的趋势,但到目前为止,平流层中的硫酸气溶胶含量仍占主导地位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Lidar Observations of Stratospheric Aerosols in Obninsk in 2012–2021: Influence of Volcanic Eruptions and Biomass Burning

分享
查看原文
Lidar Observations of Stratospheric Aerosols in Obninsk in 2012–2021: Influence of Volcanic Eruptions and Biomass Burning

Abstract

Results of lidar observations at a wavelength of 532 nm in Obninsk over the period from 2012 to 2021 are presented. In 2014–2018 the stratosphere aerosol was in a state close to the background. In 2019, aerosol maxima were observed in the 15–30 km layer associated with the eruptions of the Ambae and Raikoke volcanoes. The seasonal behavior of the integral backscattering coefficient in the background period is presented. In the lower layer of the stratosphere of 13–23 km, an increase in backscattering was observed in the second half of the year, associated with an increase in the number of natural fires. In the 23–30 km layer, the maximum backscattering was observed in summer. It was found that the contribution of the lower layer of 10–15 km to the optical thickness of the entire layer of 10–30 km is on average 61%. This implies the need to take into account the aerosol of the lower layer of 10–15 km in the overall balance of stratospheric aerosol in chemical–climatic models of the stratosphere. In the second half of the year, aerosol of natural fires is often observed in the 10–15 km layer. In some episodes, the addition of natural fire aerosol to an optical layer thickness of 10–30 km with respect to the spherical sulfuric acid aerosol ranges from 50 to 150%. At the same time, in annual mean terms, this additive in 2014–2021 on average was only 10%. In the last 5 years, there has been a trend towards an increase in the content of aerosol from natural fires, but so far the content of sulfate aerosol in the stratosphere remains predominant.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信