{"title":"中国亚热带森林土壤细菌和真菌群落对长期氮添加的适应能力","authors":"Xinlei Fu, Yunze Dai, Jun Cui, Pengfei Deng, Wei Fan, Xiaoniu Xu","doi":"10.1007/s11676-023-01675-6","DOIUrl":null,"url":null,"abstract":"<p>Atmospheric nitrogen (N) deposition is predicted to increase, especially in the subtropics. However, the responses of soil microorganisms to long-term N addition at the molecular level in N-rich subtropical forests have not been clarified. A long-term nutrient addition experiment was conducted in a subtropical evergreen old-growth forest in China. The four treatments were: control, low N (50 kg N ha<sup>−1</sup> a<sup>−1</sup>), high N (100 kg N ha<sup>−1</sup> a<sup>−1</sup>), and combined N and phosphorus (P) (100 kg N ha<sup>−1</sup> a<sup>−1</sup> + 50 kg P ha<sup>−1</sup> a<sup>−1</sup>). Metagenomic sequencing characterized diversity and composition of soil microbial communities and used to construct bacterial/fungal co-occurrence networks. Nutrient-treated soils were more acidic and had higher levels of dissolved organic carbon than controls. There were no significant differences in microbial diversity and community composition across treatments. The addition of nutrients increased the abundance of copiotrophic bacteria and potentially beneficial microorganisms (e.g., Gemmatimonadetes, <i>Chaetomium</i>, and <i>Aureobasidium</i>). Low N addition increased microbiome network connectivity. Three rare fungi were identified as module hubs under nutrient addition, indicating that low abundance fungi were more sensitive to increased nutrients. The results indicate that the overall composition of microbial communities was stable but not static to long-term N addition. Our findings provide new insights that can aid predictions of the response of soil microbial communities to long-term N addition.</p>","PeriodicalId":15830,"journal":{"name":"Journal of Forestry Research","volume":"23 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soil bacterial and fungal communities resilience to long-term nitrogen addition in subtropical forests in China\",\"authors\":\"Xinlei Fu, Yunze Dai, Jun Cui, Pengfei Deng, Wei Fan, Xiaoniu Xu\",\"doi\":\"10.1007/s11676-023-01675-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Atmospheric nitrogen (N) deposition is predicted to increase, especially in the subtropics. However, the responses of soil microorganisms to long-term N addition at the molecular level in N-rich subtropical forests have not been clarified. A long-term nutrient addition experiment was conducted in a subtropical evergreen old-growth forest in China. The four treatments were: control, low N (50 kg N ha<sup>−1</sup> a<sup>−1</sup>), high N (100 kg N ha<sup>−1</sup> a<sup>−1</sup>), and combined N and phosphorus (P) (100 kg N ha<sup>−1</sup> a<sup>−1</sup> + 50 kg P ha<sup>−1</sup> a<sup>−1</sup>). Metagenomic sequencing characterized diversity and composition of soil microbial communities and used to construct bacterial/fungal co-occurrence networks. Nutrient-treated soils were more acidic and had higher levels of dissolved organic carbon than controls. There were no significant differences in microbial diversity and community composition across treatments. The addition of nutrients increased the abundance of copiotrophic bacteria and potentially beneficial microorganisms (e.g., Gemmatimonadetes, <i>Chaetomium</i>, and <i>Aureobasidium</i>). Low N addition increased microbiome network connectivity. Three rare fungi were identified as module hubs under nutrient addition, indicating that low abundance fungi were more sensitive to increased nutrients. The results indicate that the overall composition of microbial communities was stable but not static to long-term N addition. Our findings provide new insights that can aid predictions of the response of soil microbial communities to long-term N addition.</p>\",\"PeriodicalId\":15830,\"journal\":{\"name\":\"Journal of Forestry Research\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Forestry Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11676-023-01675-6\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forestry Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11676-023-01675-6","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Soil bacterial and fungal communities resilience to long-term nitrogen addition in subtropical forests in China
Atmospheric nitrogen (N) deposition is predicted to increase, especially in the subtropics. However, the responses of soil microorganisms to long-term N addition at the molecular level in N-rich subtropical forests have not been clarified. A long-term nutrient addition experiment was conducted in a subtropical evergreen old-growth forest in China. The four treatments were: control, low N (50 kg N ha−1 a−1), high N (100 kg N ha−1 a−1), and combined N and phosphorus (P) (100 kg N ha−1 a−1 + 50 kg P ha−1 a−1). Metagenomic sequencing characterized diversity and composition of soil microbial communities and used to construct bacterial/fungal co-occurrence networks. Nutrient-treated soils were more acidic and had higher levels of dissolved organic carbon than controls. There were no significant differences in microbial diversity and community composition across treatments. The addition of nutrients increased the abundance of copiotrophic bacteria and potentially beneficial microorganisms (e.g., Gemmatimonadetes, Chaetomium, and Aureobasidium). Low N addition increased microbiome network connectivity. Three rare fungi were identified as module hubs under nutrient addition, indicating that low abundance fungi were more sensitive to increased nutrients. The results indicate that the overall composition of microbial communities was stable but not static to long-term N addition. Our findings provide new insights that can aid predictions of the response of soil microbial communities to long-term N addition.
期刊介绍:
The Journal of Forestry Research (JFR), founded in 1990, is a peer-reviewed quarterly journal in English. JFR has rapidly emerged as an international journal published by Northeast Forestry University and Ecological Society of China in collaboration with Springer Verlag. The journal publishes scientific articles related to forestry for a broad range of international scientists, forest managers and practitioners.The scope of the journal covers the following five thematic categories and 20 subjects:
Basic Science of Forestry,
Forest biometrics,
Forest soils,
Forest hydrology,
Tree physiology,
Forest biomass, carbon, and bioenergy,
Forest biotechnology and molecular biology,
Forest Ecology,
Forest ecology,
Forest ecological services,
Restoration ecology,
Forest adaptation to climate change,
Wildlife ecology and management,
Silviculture and Forest Management,
Forest genetics and tree breeding,
Silviculture,
Forest RS, GIS, and modeling,
Forest management,
Forest Protection,
Forest entomology and pathology,
Forest fire,
Forest resources conservation,
Forest health monitoring and assessment,
Wood Science and Technology,
Wood Science and Technology.