具有相同枚举不变式的矩阵之间的连接性差距

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Joseph E. Bonin, Kevin Long
{"title":"具有相同枚举不变式的矩阵之间的连接性差距","authors":"Joseph E. Bonin,&nbsp;Kevin Long","doi":"10.1016/j.aam.2023.102648","DOIUrl":null,"url":null,"abstract":"<div><p>Many important enumerative invariants of a matroid can be obtained from its Tutte polynomial, and many more are determined by two stronger invariants, the <span><math><mi>G</mi></math></span>-invariant and the configuration of the matroid. We show that the same is not true of the most basic connectivity invariants. Specifically, we show that for any positive integer <em>n</em>, there are pairs of matroids that have the same configuration (and so the same <span><math><mi>G</mi></math></span>-invariant and the same Tutte polynomial) but the difference between their Tutte connectivities exceeds <em>n</em><span>, and likewise for vertical connectivity and branch-width. The examples that we use to show this, which we construct using an operation that we introduce, are transversal matroids that are also positroids.</span></p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Connectivity gaps among matroids with the same enumerative invariants\",\"authors\":\"Joseph E. Bonin,&nbsp;Kevin Long\",\"doi\":\"10.1016/j.aam.2023.102648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Many important enumerative invariants of a matroid can be obtained from its Tutte polynomial, and many more are determined by two stronger invariants, the <span><math><mi>G</mi></math></span>-invariant and the configuration of the matroid. We show that the same is not true of the most basic connectivity invariants. Specifically, we show that for any positive integer <em>n</em>, there are pairs of matroids that have the same configuration (and so the same <span><math><mi>G</mi></math></span>-invariant and the same Tutte polynomial) but the difference between their Tutte connectivities exceeds <em>n</em><span>, and likewise for vertical connectivity and branch-width. The examples that we use to show this, which we construct using an operation that we introduce, are transversal matroids that are also positroids.</span></p></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885823001665\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885823001665","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

矩阵的许多重要枚举不变式都可以从它的图特多项式中获得,而更多的枚举不变式是由两个更强的不变式--G不变式和矩阵的配置--决定的。我们证明,最基本的连接性不变式并非如此。具体来说,我们证明了对于任何正整数 n,都存在一对具有相同配置(因此具有相同的 G 不变式和相同的 Tutte 多项式)的矩阵,但是它们的 Tutte 连接度之间的差异超过了 n,垂直连接度和分支宽度也是如此。我们用来证明这一点的例子是横向矩阵,它们也是正多边形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Connectivity gaps among matroids with the same enumerative invariants

Many important enumerative invariants of a matroid can be obtained from its Tutte polynomial, and many more are determined by two stronger invariants, the G-invariant and the configuration of the matroid. We show that the same is not true of the most basic connectivity invariants. Specifically, we show that for any positive integer n, there are pairs of matroids that have the same configuration (and so the same G-invariant and the same Tutte polynomial) but the difference between their Tutte connectivities exceeds n, and likewise for vertical connectivity and branch-width. The examples that we use to show this, which we construct using an operation that we introduce, are transversal matroids that are also positroids.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信