正流棘与接触三漫游,II

IF 1 3区 数学 Q1 MATHEMATICS
Ippei Ishii, Masaharu Ishikawa, Yuya Koda, Hironobu Naoe
{"title":"正流棘与接触三漫游,II","authors":"Ippei Ishii,&nbsp;Masaharu Ishikawa,&nbsp;Yuya Koda,&nbsp;Hironobu Naoe","doi":"10.1007/s10231-023-01400-4","DOIUrl":null,"url":null,"abstract":"<div><p>In our previous paper, it is proved that for any positive flow-spine <i>P</i> of a closed, oriented 3-manifold <i>M</i>, there exists a unique contact structure supported by <i>P</i> up to isotopy. In particular, this defines a map from the set of isotopy classes of positive flow-spines of <i>M</i> to the set of isotopy classes of contact structures on <i>M</i>. In this paper, we show that this map is surjective. As a corollary, we show that any flow-spine can be deformed to a positive flow-spine by applying first and second regular moves successively.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positive flow-spines and contact 3-manifolds, II\",\"authors\":\"Ippei Ishii,&nbsp;Masaharu Ishikawa,&nbsp;Yuya Koda,&nbsp;Hironobu Naoe\",\"doi\":\"10.1007/s10231-023-01400-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In our previous paper, it is proved that for any positive flow-spine <i>P</i> of a closed, oriented 3-manifold <i>M</i>, there exists a unique contact structure supported by <i>P</i> up to isotopy. In particular, this defines a map from the set of isotopy classes of positive flow-spines of <i>M</i> to the set of isotopy classes of contact structures on <i>M</i>. In this paper, we show that this map is surjective. As a corollary, we show that any flow-spine can be deformed to a positive flow-spine by applying first and second regular moves successively.</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-023-01400-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-023-01400-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在我们之前的论文中,我们证明了对于闭合定向三芒星 M 的任何正流刺 P,都存在一个由 P 支持的唯一接触结构(直到等式)。特别是,这定义了一个从 M 的正流刺等距类集合到 M 上接触结构等距类集合的映射。作为推论,我们证明任何流刺都可以通过连续应用第一和第二规则移动变形为正流刺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Positive flow-spines and contact 3-manifolds, II

Positive flow-spines and contact 3-manifolds, II

Positive flow-spines and contact 3-manifolds, II

In our previous paper, it is proved that for any positive flow-spine P of a closed, oriented 3-manifold M, there exists a unique contact structure supported by P up to isotopy. In particular, this defines a map from the set of isotopy classes of positive flow-spines of M to the set of isotopy classes of contact structures on M. In this paper, we show that this map is surjective. As a corollary, we show that any flow-spine can be deformed to a positive flow-spine by applying first and second regular moves successively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信