Rifat Shaheen, Hafeez Ullah, M.M. Moharam, Ahmad M. Saeedi, Ebraheem Abdu Musad Saleh, Muhammad Ijaz, Adel A. El-Zahhar, Gamil A.A.M. Al-Hazmi, Sana Ullah Asif, Hafiz Muhammad Tahir
{"title":"溶胶-凝胶法合成的掺铽尖晶石铁氧体(SrFe2O4)的结构、介电和磁性能","authors":"Rifat Shaheen, Hafeez Ullah, M.M. Moharam, Ahmad M. Saeedi, Ebraheem Abdu Musad Saleh, Muhammad Ijaz, Adel A. El-Zahhar, Gamil A.A.M. Al-Hazmi, Sana Ullah Asif, Hafiz Muhammad Tahir","doi":"10.1016/j.jre.2023.12.002","DOIUrl":null,"url":null,"abstract":"<p>In this research work, sol-gel technique was employed to prepare the strontium based spinel ferrite nanoparticles (SrFe<sub>2</sub>O<sub>4</sub>) with different ratios of terbium (Tb). Different characterization techniques were used to investigate the structural, morphological, dielectric and magnetic properties of the prepared samples. X-ray diffraction (XRD) result suggests that face-centered cube spinel nanocrystalline structure is formed. Crystallite size of the SrFe<sub>2</sub>O<sub>4</sub> decreases with rising of Tb ratio. The morphology, shape and size of the SrFe<sub>2</sub>O<sub>4</sub> were examined by scanning electron microscopy (SEM) analysis and results reveal inhomogeneous distributions of the nanostructures with high agglomeration. The electrical resistivity of the SrFe<sub>2</sub>O<sub>4</sub> increases with rising of Tb ratio, which is confirmed from the cyclic voltammetry. It is observed that dielectric constant of all the samples decreases with increasing the frequency range. It is determined that the dielectric constants of the spinel ferrites are frequency dependent and decrease with increasing the frequency of applied electric field. The magnetic behavior of SrFe<sub>2</sub>O<sub>4</sub> with different ratios of Tb was studied and it is found that the saturation magnetization values of samples decrease with increase in the substitution of Tb<sup>3+</sup> at octahedral sites for Fe<sup>3+</sup>. This decrease in the values of <em>M</em><sub>s</sub> is also attributed to spin at surface of nanoparticles.</p>","PeriodicalId":16940,"journal":{"name":"Journal of Rare Earths","volume":"31 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural, dielectric and magnetic properties of terbium doped strontium spinel ferrite (SrFe2O4) synthesized by sol-gel method\",\"authors\":\"Rifat Shaheen, Hafeez Ullah, M.M. Moharam, Ahmad M. Saeedi, Ebraheem Abdu Musad Saleh, Muhammad Ijaz, Adel A. El-Zahhar, Gamil A.A.M. Al-Hazmi, Sana Ullah Asif, Hafiz Muhammad Tahir\",\"doi\":\"10.1016/j.jre.2023.12.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this research work, sol-gel technique was employed to prepare the strontium based spinel ferrite nanoparticles (SrFe<sub>2</sub>O<sub>4</sub>) with different ratios of terbium (Tb). Different characterization techniques were used to investigate the structural, morphological, dielectric and magnetic properties of the prepared samples. X-ray diffraction (XRD) result suggests that face-centered cube spinel nanocrystalline structure is formed. Crystallite size of the SrFe<sub>2</sub>O<sub>4</sub> decreases with rising of Tb ratio. The morphology, shape and size of the SrFe<sub>2</sub>O<sub>4</sub> were examined by scanning electron microscopy (SEM) analysis and results reveal inhomogeneous distributions of the nanostructures with high agglomeration. The electrical resistivity of the SrFe<sub>2</sub>O<sub>4</sub> increases with rising of Tb ratio, which is confirmed from the cyclic voltammetry. It is observed that dielectric constant of all the samples decreases with increasing the frequency range. It is determined that the dielectric constants of the spinel ferrites are frequency dependent and decrease with increasing the frequency of applied electric field. The magnetic behavior of SrFe<sub>2</sub>O<sub>4</sub> with different ratios of Tb was studied and it is found that the saturation magnetization values of samples decrease with increase in the substitution of Tb<sup>3+</sup> at octahedral sites for Fe<sup>3+</sup>. This decrease in the values of <em>M</em><sub>s</sub> is also attributed to spin at surface of nanoparticles.</p>\",\"PeriodicalId\":16940,\"journal\":{\"name\":\"Journal of Rare Earths\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rare Earths\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jre.2023.12.002\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rare Earths","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jre.2023.12.002","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Structural, dielectric and magnetic properties of terbium doped strontium spinel ferrite (SrFe2O4) synthesized by sol-gel method
In this research work, sol-gel technique was employed to prepare the strontium based spinel ferrite nanoparticles (SrFe2O4) with different ratios of terbium (Tb). Different characterization techniques were used to investigate the structural, morphological, dielectric and magnetic properties of the prepared samples. X-ray diffraction (XRD) result suggests that face-centered cube spinel nanocrystalline structure is formed. Crystallite size of the SrFe2O4 decreases with rising of Tb ratio. The morphology, shape and size of the SrFe2O4 were examined by scanning electron microscopy (SEM) analysis and results reveal inhomogeneous distributions of the nanostructures with high agglomeration. The electrical resistivity of the SrFe2O4 increases with rising of Tb ratio, which is confirmed from the cyclic voltammetry. It is observed that dielectric constant of all the samples decreases with increasing the frequency range. It is determined that the dielectric constants of the spinel ferrites are frequency dependent and decrease with increasing the frequency of applied electric field. The magnetic behavior of SrFe2O4 with different ratios of Tb was studied and it is found that the saturation magnetization values of samples decrease with increase in the substitution of Tb3+ at octahedral sites for Fe3+. This decrease in the values of Ms is also attributed to spin at surface of nanoparticles.
期刊介绍:
The Journal of Rare Earths reports studies on the 17 rare earth elements. It is a unique English-language learned journal that publishes works on various aspects of basic theory and applied science in the field of rare earths (RE). The journal accepts original high-quality original research papers and review articles with inventive content, and complete experimental data. It represents high academic standards and new progress in the RE field. Due to the advantage of abundant RE resources of China, the research on RE develops very actively, and papers on the latest progress in this field emerge every year. It is not only an important resource in which technicians publish and obtain their latest research results on RE, but also an important way of reflecting the updated progress in RE research field.
The Journal of Rare Earths covers all research and application of RE rare earths including spectroscopy, luminescence and phosphors, rare earth catalysis, magnetism and magnetic materials, advanced rare earth materials, RE chemistry & hydrometallurgy, RE metallography & pyrometallurgy, RE new materials, RE solid state physics & solid state chemistry, rare earth applications, RE analysis & test, RE geology & ore dressing, etc.