Tyler Kozisek, Luke Samuelson, Andrew Hamann, Angela K. Pannier
{"title":"系统比较在人类间充质干细胞中高效共表达两种转基因的非病毒基因递送策略","authors":"Tyler Kozisek, Luke Samuelson, Andrew Hamann, Angela K. Pannier","doi":"10.1186/s13036-023-00394-0","DOIUrl":null,"url":null,"abstract":"Human mesenchymal stem cells (hMSCs) are being researched for cell-based therapies due to a host of unique properties, however, genetic modification of hMSCs, accomplished through nonviral gene delivery, could greatly advance their therapeutic potential. Furthermore, expression of multiple transgenes in hMSCs could greatly advance their clinical significance for treatment of multifaceted diseases, as individual transgenes could be expressed that target separate pathogenic drivers of complex diseases. Expressing multiple transgenes can be accomplished by delivering multiple DNA vectors encoding for each transgene, or by delivering a single poly-cistronic vector that encodes for each transgene and accomplishes expression through either use of multiple promoters, an internal ribosome entry site (IRES), or a 2A peptide sequence. These different transgene expression strategies have been used to express multiple transgenes in various mammalian cells, however, they have not been fully evaluated in difficult-to-transfect primary cells, like hMSCs. This study systematically compared four transgene expression and delivery strategies for expression of two reporter transgenes in four donors of hMSCs from two tissue sources using lipid- and polymer-mediate transfection, as follows: (i) delivery of separate DNA vectors in separate nanoparticles; (ii) delivery of separate DNA vectors combined in the same nanoparticle; (iii) delivery of a bi-cistronic DNA vector with an IRES sequence via nanoparticles; and (iv) delivery of a bi-cistronic DNA vector with a dual 2A peptide sequence via nanoparticles. Our results indicate that expression of two transgenes in hMSCs, independent of expression or delivery strategy, is inefficient compared to expressing a single transgene. However, delivery of separate DNA vectors complexed in the same nanoparticle, or delivery of a bi-cistronic DNA vector with a dual 2A peptide sequence, significantly increased the number of hMSCs expressing both transgenes compared to other conditions tested. Separate DNA vectors delivered in the same nanoparticle and bi-cistronic DNA vectors with dual 2A peptide sequences are highly efficient at simultaneously expressing two transgenes in multiple donors of hMSCs from different tissue sources. The data presented in this work can guide the development of hMSC transfection systems for delivery of multiple transgenes, with the goal of producing clinically relevant, genetically modified hMSCs.\n","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"16 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systematic comparison of nonviral gene delivery strategies for efficient co-expression of two transgenes in human mesenchymal stem cells\",\"authors\":\"Tyler Kozisek, Luke Samuelson, Andrew Hamann, Angela K. Pannier\",\"doi\":\"10.1186/s13036-023-00394-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human mesenchymal stem cells (hMSCs) are being researched for cell-based therapies due to a host of unique properties, however, genetic modification of hMSCs, accomplished through nonviral gene delivery, could greatly advance their therapeutic potential. Furthermore, expression of multiple transgenes in hMSCs could greatly advance their clinical significance for treatment of multifaceted diseases, as individual transgenes could be expressed that target separate pathogenic drivers of complex diseases. Expressing multiple transgenes can be accomplished by delivering multiple DNA vectors encoding for each transgene, or by delivering a single poly-cistronic vector that encodes for each transgene and accomplishes expression through either use of multiple promoters, an internal ribosome entry site (IRES), or a 2A peptide sequence. These different transgene expression strategies have been used to express multiple transgenes in various mammalian cells, however, they have not been fully evaluated in difficult-to-transfect primary cells, like hMSCs. This study systematically compared four transgene expression and delivery strategies for expression of two reporter transgenes in four donors of hMSCs from two tissue sources using lipid- and polymer-mediate transfection, as follows: (i) delivery of separate DNA vectors in separate nanoparticles; (ii) delivery of separate DNA vectors combined in the same nanoparticle; (iii) delivery of a bi-cistronic DNA vector with an IRES sequence via nanoparticles; and (iv) delivery of a bi-cistronic DNA vector with a dual 2A peptide sequence via nanoparticles. Our results indicate that expression of two transgenes in hMSCs, independent of expression or delivery strategy, is inefficient compared to expressing a single transgene. However, delivery of separate DNA vectors complexed in the same nanoparticle, or delivery of a bi-cistronic DNA vector with a dual 2A peptide sequence, significantly increased the number of hMSCs expressing both transgenes compared to other conditions tested. Separate DNA vectors delivered in the same nanoparticle and bi-cistronic DNA vectors with dual 2A peptide sequences are highly efficient at simultaneously expressing two transgenes in multiple donors of hMSCs from different tissue sources. The data presented in this work can guide the development of hMSC transfection systems for delivery of multiple transgenes, with the goal of producing clinically relevant, genetically modified hMSCs.\\n\",\"PeriodicalId\":15053,\"journal\":{\"name\":\"Journal of Biological Engineering\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Engineering\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13036-023-00394-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Engineering","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13036-023-00394-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Systematic comparison of nonviral gene delivery strategies for efficient co-expression of two transgenes in human mesenchymal stem cells
Human mesenchymal stem cells (hMSCs) are being researched for cell-based therapies due to a host of unique properties, however, genetic modification of hMSCs, accomplished through nonviral gene delivery, could greatly advance their therapeutic potential. Furthermore, expression of multiple transgenes in hMSCs could greatly advance their clinical significance for treatment of multifaceted diseases, as individual transgenes could be expressed that target separate pathogenic drivers of complex diseases. Expressing multiple transgenes can be accomplished by delivering multiple DNA vectors encoding for each transgene, or by delivering a single poly-cistronic vector that encodes for each transgene and accomplishes expression through either use of multiple promoters, an internal ribosome entry site (IRES), or a 2A peptide sequence. These different transgene expression strategies have been used to express multiple transgenes in various mammalian cells, however, they have not been fully evaluated in difficult-to-transfect primary cells, like hMSCs. This study systematically compared four transgene expression and delivery strategies for expression of two reporter transgenes in four donors of hMSCs from two tissue sources using lipid- and polymer-mediate transfection, as follows: (i) delivery of separate DNA vectors in separate nanoparticles; (ii) delivery of separate DNA vectors combined in the same nanoparticle; (iii) delivery of a bi-cistronic DNA vector with an IRES sequence via nanoparticles; and (iv) delivery of a bi-cistronic DNA vector with a dual 2A peptide sequence via nanoparticles. Our results indicate that expression of two transgenes in hMSCs, independent of expression or delivery strategy, is inefficient compared to expressing a single transgene. However, delivery of separate DNA vectors complexed in the same nanoparticle, or delivery of a bi-cistronic DNA vector with a dual 2A peptide sequence, significantly increased the number of hMSCs expressing both transgenes compared to other conditions tested. Separate DNA vectors delivered in the same nanoparticle and bi-cistronic DNA vectors with dual 2A peptide sequences are highly efficient at simultaneously expressing two transgenes in multiple donors of hMSCs from different tissue sources. The data presented in this work can guide the development of hMSC transfection systems for delivery of multiple transgenes, with the goal of producing clinically relevant, genetically modified hMSCs.
期刊介绍:
Biological engineering is an emerging discipline that encompasses engineering theory and practice connected to and derived from the science of biology, just as mechanical engineering and electrical engineering are rooted in physics and chemical engineering in chemistry. Topical areas include, but are not limited to:
Synthetic biology and cellular design
Biomolecular, cellular and tissue engineering
Bioproduction and metabolic engineering
Biosensors
Ecological and environmental engineering
Biological engineering education and the biodesign process
As the official journal of the Institute of Biological Engineering, Journal of Biological Engineering provides a home for the continuum from biological information science, molecules and cells, product formation, wastes and remediation, and educational advances in curriculum content and pedagogy at the undergraduate and graduate-levels.
Manuscripts should explore commonalities with other fields of application by providing some discussion of the broader context of the work and how it connects to other areas within the field.