转录组揭示南极洲阿蒙森海多尼亚的古生物硝化过程

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Joo-Han Gwak, Samuel Imisi Awala, So-Jeong Kim, Sang-Hoon Lee, Eun-Jin Yang, Jisoo Park, Jinyoung Jung, Sung-Keun Rhee
{"title":"转录组揭示南极洲阿蒙森海多尼亚的古生物硝化过程","authors":"Joo-Han Gwak, Samuel Imisi Awala, So-Jeong Kim, Sang-Hoon Lee, Eun-Jin Yang, Jisoo Park, Jinyoung Jung, Sung-Keun Rhee","doi":"10.1007/s12275-023-00090-0","DOIUrl":null,"url":null,"abstract":"<p>Antarctic polynyas have the highest Southern Ocean summer primary productivity, and due to anthropogenic climate change, these areas have formed faster recently. Ammonia-oxidizing archaea (AOA) are among the most ubiquitous and abundant microorganisms in the ocean and play a primary role in the global nitrogen cycle. We utilized metagenomics and metatranscriptomics to gain insights into the physiology and metabolism of AOA in polar oceans, which are associated with ecosystem functioning. A polar-specific ecotype of AOA, from the “<i>Candidatus</i> Nitrosomarinus”-like group, was observed to be dominant in the Amundsen Sea Polynya (ASP), West Antarctica, during a succession of summer phytoplankton blooms. AOA had the highest transcriptional activity among prokaryotes during the bloom decline phase (DC). Metatranscriptomic analysis of key genes involved in ammonia oxidation, carbon fixation, transport, and cell division indicated that this polar AOA ecotype was actively involved in nitrification in the bloom DC in the ASP. This study revealed the physiological and metabolic traits of this key polar-type AOA in response to phytoplankton blooms in the ASP and provided insights into AOA functions in polar oceans.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcriptomic Insights into Archaeal Nitrification in the Amundsen Sea Polynya, Antarctica\",\"authors\":\"Joo-Han Gwak, Samuel Imisi Awala, So-Jeong Kim, Sang-Hoon Lee, Eun-Jin Yang, Jisoo Park, Jinyoung Jung, Sung-Keun Rhee\",\"doi\":\"10.1007/s12275-023-00090-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Antarctic polynyas have the highest Southern Ocean summer primary productivity, and due to anthropogenic climate change, these areas have formed faster recently. Ammonia-oxidizing archaea (AOA) are among the most ubiquitous and abundant microorganisms in the ocean and play a primary role in the global nitrogen cycle. We utilized metagenomics and metatranscriptomics to gain insights into the physiology and metabolism of AOA in polar oceans, which are associated with ecosystem functioning. A polar-specific ecotype of AOA, from the “<i>Candidatus</i> Nitrosomarinus”-like group, was observed to be dominant in the Amundsen Sea Polynya (ASP), West Antarctica, during a succession of summer phytoplankton blooms. AOA had the highest transcriptional activity among prokaryotes during the bloom decline phase (DC). Metatranscriptomic analysis of key genes involved in ammonia oxidation, carbon fixation, transport, and cell division indicated that this polar AOA ecotype was actively involved in nitrification in the bloom DC in the ASP. This study revealed the physiological and metabolic traits of this key polar-type AOA in response to phytoplankton blooms in the ASP and provided insights into AOA functions in polar oceans.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12275-023-00090-0\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12275-023-00090-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

南极多沼泽具有最高的南大洋夏季初级生产力,由于人为气候变化,这些地区最近形成得更快了。氨氧化古细菌(AOA)是海洋中最普遍、最丰富的微生物之一,在全球氮循环中发挥着主要作用。我们利用元基因组学和元转录组学深入了解极地海洋中与生态系统功能有关的氨氧化古细菌的生理和代谢。在南极洲西部的阿蒙森海多尼亚(Amundsen Sea Polynya,ASP),在夏季浮游植物大量繁殖期间,观察到一种极地特有的 AOA 生态型,来自 "Candidatus Nitrosomarinus "类群,占主导地位。在水华衰退阶段(DC),AOA 的转录活性在原核生物中最高。对参与氨氧化、碳固定、运输和细胞分裂的关键基因进行的元转录组分析表明,这种极地 AOA 生态型在 ASP 的藻华衰退期积极参与硝化作用。这项研究揭示了这一关键极地型AOA在响应ASP浮游植物藻华时的生理和代谢特征,并为了解极地海洋中AOA的功能提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Transcriptomic Insights into Archaeal Nitrification in the Amundsen Sea Polynya, Antarctica

Transcriptomic Insights into Archaeal Nitrification in the Amundsen Sea Polynya, Antarctica

Antarctic polynyas have the highest Southern Ocean summer primary productivity, and due to anthropogenic climate change, these areas have formed faster recently. Ammonia-oxidizing archaea (AOA) are among the most ubiquitous and abundant microorganisms in the ocean and play a primary role in the global nitrogen cycle. We utilized metagenomics and metatranscriptomics to gain insights into the physiology and metabolism of AOA in polar oceans, which are associated with ecosystem functioning. A polar-specific ecotype of AOA, from the “Candidatus Nitrosomarinus”-like group, was observed to be dominant in the Amundsen Sea Polynya (ASP), West Antarctica, during a succession of summer phytoplankton blooms. AOA had the highest transcriptional activity among prokaryotes during the bloom decline phase (DC). Metatranscriptomic analysis of key genes involved in ammonia oxidation, carbon fixation, transport, and cell division indicated that this polar AOA ecotype was actively involved in nitrification in the bloom DC in the ASP. This study revealed the physiological and metabolic traits of this key polar-type AOA in response to phytoplankton blooms in the ASP and provided insights into AOA functions in polar oceans.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信