Joo-Han Gwak, Samuel Imisi Awala, So-Jeong Kim, Sang-Hoon Lee, Eun-Jin Yang, Jisoo Park, Jinyoung Jung, Sung-Keun Rhee
{"title":"转录组揭示南极洲阿蒙森海多尼亚的古生物硝化过程","authors":"Joo-Han Gwak, Samuel Imisi Awala, So-Jeong Kim, Sang-Hoon Lee, Eun-Jin Yang, Jisoo Park, Jinyoung Jung, Sung-Keun Rhee","doi":"10.1007/s12275-023-00090-0","DOIUrl":null,"url":null,"abstract":"<p>Antarctic polynyas have the highest Southern Ocean summer primary productivity, and due to anthropogenic climate change, these areas have formed faster recently. Ammonia-oxidizing archaea (AOA) are among the most ubiquitous and abundant microorganisms in the ocean and play a primary role in the global nitrogen cycle. We utilized metagenomics and metatranscriptomics to gain insights into the physiology and metabolism of AOA in polar oceans, which are associated with ecosystem functioning. A polar-specific ecotype of AOA, from the “<i>Candidatus</i> Nitrosomarinus”-like group, was observed to be dominant in the Amundsen Sea Polynya (ASP), West Antarctica, during a succession of summer phytoplankton blooms. AOA had the highest transcriptional activity among prokaryotes during the bloom decline phase (DC). Metatranscriptomic analysis of key genes involved in ammonia oxidation, carbon fixation, transport, and cell division indicated that this polar AOA ecotype was actively involved in nitrification in the bloom DC in the ASP. This study revealed the physiological and metabolic traits of this key polar-type AOA in response to phytoplankton blooms in the ASP and provided insights into AOA functions in polar oceans.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcriptomic Insights into Archaeal Nitrification in the Amundsen Sea Polynya, Antarctica\",\"authors\":\"Joo-Han Gwak, Samuel Imisi Awala, So-Jeong Kim, Sang-Hoon Lee, Eun-Jin Yang, Jisoo Park, Jinyoung Jung, Sung-Keun Rhee\",\"doi\":\"10.1007/s12275-023-00090-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Antarctic polynyas have the highest Southern Ocean summer primary productivity, and due to anthropogenic climate change, these areas have formed faster recently. Ammonia-oxidizing archaea (AOA) are among the most ubiquitous and abundant microorganisms in the ocean and play a primary role in the global nitrogen cycle. We utilized metagenomics and metatranscriptomics to gain insights into the physiology and metabolism of AOA in polar oceans, which are associated with ecosystem functioning. A polar-specific ecotype of AOA, from the “<i>Candidatus</i> Nitrosomarinus”-like group, was observed to be dominant in the Amundsen Sea Polynya (ASP), West Antarctica, during a succession of summer phytoplankton blooms. AOA had the highest transcriptional activity among prokaryotes during the bloom decline phase (DC). Metatranscriptomic analysis of key genes involved in ammonia oxidation, carbon fixation, transport, and cell division indicated that this polar AOA ecotype was actively involved in nitrification in the bloom DC in the ASP. This study revealed the physiological and metabolic traits of this key polar-type AOA in response to phytoplankton blooms in the ASP and provided insights into AOA functions in polar oceans.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12275-023-00090-0\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12275-023-00090-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Transcriptomic Insights into Archaeal Nitrification in the Amundsen Sea Polynya, Antarctica
Antarctic polynyas have the highest Southern Ocean summer primary productivity, and due to anthropogenic climate change, these areas have formed faster recently. Ammonia-oxidizing archaea (AOA) are among the most ubiquitous and abundant microorganisms in the ocean and play a primary role in the global nitrogen cycle. We utilized metagenomics and metatranscriptomics to gain insights into the physiology and metabolism of AOA in polar oceans, which are associated with ecosystem functioning. A polar-specific ecotype of AOA, from the “Candidatus Nitrosomarinus”-like group, was observed to be dominant in the Amundsen Sea Polynya (ASP), West Antarctica, during a succession of summer phytoplankton blooms. AOA had the highest transcriptional activity among prokaryotes during the bloom decline phase (DC). Metatranscriptomic analysis of key genes involved in ammonia oxidation, carbon fixation, transport, and cell division indicated that this polar AOA ecotype was actively involved in nitrification in the bloom DC in the ASP. This study revealed the physiological and metabolic traits of this key polar-type AOA in response to phytoplankton blooms in the ASP and provided insights into AOA functions in polar oceans.