Keisuke Osawa, D. S. V. Bandara, Ryu Nakadate, Eiichiro Tanaka, Yoshihiro Nagao, Tomohiko Akahoshi, Masatoshi Eto, Jumpei Arata
{"title":"利用伪刚体模型对多自由度腔内镊子的连续顺应结构进行早期建模和分析","authors":"Keisuke Osawa, D. S. V. Bandara, Ryu Nakadate, Eiichiro Tanaka, Yoshihiro Nagao, Tomohiko Akahoshi, Masatoshi Eto, Jumpei Arata","doi":"10.1080/01691864.2023.2291137","DOIUrl":null,"url":null,"abstract":"Early detection and treatment of intraluminal diseases enable minimally invasive surgery and can lead to a high cure rate. Advanced devices with multiple degrees of freedom (DOFs) make narrow intra...","PeriodicalId":7261,"journal":{"name":"Advanced Robotics","volume":"30 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early-stage modeling and analysis of continuum compliant structure for multi-DOF endoluminal forceps using pseudo-rigid-body model\",\"authors\":\"Keisuke Osawa, D. S. V. Bandara, Ryu Nakadate, Eiichiro Tanaka, Yoshihiro Nagao, Tomohiko Akahoshi, Masatoshi Eto, Jumpei Arata\",\"doi\":\"10.1080/01691864.2023.2291137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Early detection and treatment of intraluminal diseases enable minimally invasive surgery and can lead to a high cure rate. Advanced devices with multiple degrees of freedom (DOFs) make narrow intra...\",\"PeriodicalId\":7261,\"journal\":{\"name\":\"Advanced Robotics\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/01691864.2023.2291137\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/01691864.2023.2291137","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
Early-stage modeling and analysis of continuum compliant structure for multi-DOF endoluminal forceps using pseudo-rigid-body model
Early detection and treatment of intraluminal diseases enable minimally invasive surgery and can lead to a high cure rate. Advanced devices with multiple degrees of freedom (DOFs) make narrow intra...
期刊介绍:
Advanced Robotics (AR) is the international journal of the Robotics Society of Japan and has a history of more than twenty years. It is an interdisciplinary journal which integrates publication of all aspects of research on robotics science and technology. Advanced Robotics publishes original research papers and survey papers from all over the world. Issues contain papers on analysis, theory, design, development, implementation and use of robots and robot technology. The journal covers both fundamental robotics and robotics related to applied fields such as service robotics, field robotics, medical robotics, rescue robotics, space robotics, underwater robotics, agriculture robotics, industrial robotics, and robots in emerging fields. It also covers aspects of social and managerial analysis and policy regarding robots.
Advanced Robotics (AR) is an international, ranked, peer-reviewed journal which publishes original research contributions to scientific knowledge.
All manuscript submissions are subject to initial appraisal by the Editor, and, if found suitable for further consideration, to peer review by independent, anonymous expert referees.