{"title":"液滴物理学与细胞内相分离","authors":"Frank Jülicher, Christoph A. Weber","doi":"10.1146/annurev-conmatphys-031720-032917","DOIUrl":null,"url":null,"abstract":"Living cells are spatially organized by compartments that can nucleate, grow, and dissolve. Compartmentalization can emerge by phase separation, leading to the formation of droplets in the cell's nucleo- or cytoplasm, also called biomolecular condensates. Such droplets can organize the biochemistry of the cell by providing specific chemical environments in space and time. These compartments provide transient environments, suggesting the relevance of nonequilibrium physics of droplets as a key to unraveling the underlying physicochemical principles of biological functions in living cells. In this review, we highlight coarse-grained approaches that capture the physics of chemically active emulsions as a model for condensates orchestrating chemical processes. We also discuss the dynamics of single molecules in condensates and the material properties of biological condensates and their relevance for the cell. Finally, we propose wetting, prewetting, and surface phase transitions as a possibility for intracellular surfaces to control biological condensates, spatially organize membranes, and exert mechanical forces.Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 15 is March 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"29 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Droplet Physics and Intracellular Phase Separation\",\"authors\":\"Frank Jülicher, Christoph A. Weber\",\"doi\":\"10.1146/annurev-conmatphys-031720-032917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Living cells are spatially organized by compartments that can nucleate, grow, and dissolve. Compartmentalization can emerge by phase separation, leading to the formation of droplets in the cell's nucleo- or cytoplasm, also called biomolecular condensates. Such droplets can organize the biochemistry of the cell by providing specific chemical environments in space and time. These compartments provide transient environments, suggesting the relevance of nonequilibrium physics of droplets as a key to unraveling the underlying physicochemical principles of biological functions in living cells. In this review, we highlight coarse-grained approaches that capture the physics of chemically active emulsions as a model for condensates orchestrating chemical processes. We also discuss the dynamics of single molecules in condensates and the material properties of biological condensates and their relevance for the cell. Finally, we propose wetting, prewetting, and surface phase transitions as a possibility for intracellular surfaces to control biological condensates, spatially organize membranes, and exert mechanical forces.Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 15 is March 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":7925,\"journal\":{\"name\":\"Annual Review of Condensed Matter Physics\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Condensed Matter Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-conmatphys-031720-032917\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-conmatphys-031720-032917","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Droplet Physics and Intracellular Phase Separation
Living cells are spatially organized by compartments that can nucleate, grow, and dissolve. Compartmentalization can emerge by phase separation, leading to the formation of droplets in the cell's nucleo- or cytoplasm, also called biomolecular condensates. Such droplets can organize the biochemistry of the cell by providing specific chemical environments in space and time. These compartments provide transient environments, suggesting the relevance of nonequilibrium physics of droplets as a key to unraveling the underlying physicochemical principles of biological functions in living cells. In this review, we highlight coarse-grained approaches that capture the physics of chemically active emulsions as a model for condensates orchestrating chemical processes. We also discuss the dynamics of single molecules in condensates and the material properties of biological condensates and their relevance for the cell. Finally, we propose wetting, prewetting, and surface phase transitions as a possibility for intracellular surfaces to control biological condensates, spatially organize membranes, and exert mechanical forces.Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 15 is March 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
Since its inception in 2010, the Annual Review of Condensed Matter Physics has been chronicling significant advancements in the field and its related subjects. By highlighting recent developments and offering critical evaluations, the journal actively contributes to the ongoing discourse in condensed matter physics. The latest volume of the journal has transitioned from gated access to open access, facilitated by Annual Reviews' Subscribe to Open initiative. Under this program, all articles are now published under a CC BY license, ensuring broader accessibility and dissemination of knowledge.