Nickolai G. Nilsen , Stuart J. Gilson , Hilde R. Pedersen , Lene A. Hagen , Christine F. Wildsoet , Rigmor C. Baraas
{"title":"局部使用 1 % 阿托品对人眼尺寸和昼夜节律的影响","authors":"Nickolai G. Nilsen , Stuart J. Gilson , Hilde R. Pedersen , Lene A. Hagen , Christine F. Wildsoet , Rigmor C. Baraas","doi":"10.1016/j.visres.2023.108341","DOIUrl":null,"url":null,"abstract":"<div><p>The effect of topical 1 % atropine on the diurnal rhythms of the human eye was investigated. Participants wore an activity monitor on Days 1–7. A set of measures (epochs) encompassing intraocular pressure (IOP), ocular biometry, and retinal imaging were obtained on Day 7 (baseline), followed by eight epochs on Day 8, and one on Day 9 from both eyes of healthy participants (n = 22, 19–25 years). The sleep time of participants (collected via actigraphy) was used as a reference in scheduling epochs. Topical 1 % atropine was instilled in the dominant eye on Day 8, 2 h after habitual wake time, using the fellow eye as control (paired-eye design). Sinusoids with a 24-h period were fitted to the data, and a non-linear mixed-effects model was used to estimate rhythmic statistics. There were no interocular differences in any of the measured parameters at baseline. Comparing pre- versus post-atropine in treated eyes revealed lower IOP, deeper anterior chamber (ACD), decreased crystalline lens thickness and shorter axial length (AL). The same trends were observed when comparing atropine-treated versus fellow control eyes, except for IOP and AL (no differences). Both atropine-treated and fellow control eyes showed significant diurnal variations in all ocular parameters, with atropine-treated eyes revealing larger AL and retinal thickness amplitudes, smaller vitreous chamber depth (VCD) amplitudes, and a significant phase advancement for ACD and VCD. There were no interocular differences in choroidal thickness rhythms. In conclusion, while ocular diurnal rhythms persisted after instillation of 1 % atropine, many rhythmic parameters were altered.</p></div>","PeriodicalId":23670,"journal":{"name":"Vision Research","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0042698923001657/pdfft?md5=28107cf8ddcd6ea2f92075e0346e3508&pid=1-s2.0-S0042698923001657-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The effect of topical 1 % atropine on ocular dimensions and diurnal rhythms of the human eye\",\"authors\":\"Nickolai G. Nilsen , Stuart J. Gilson , Hilde R. Pedersen , Lene A. Hagen , Christine F. Wildsoet , Rigmor C. Baraas\",\"doi\":\"10.1016/j.visres.2023.108341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The effect of topical 1 % atropine on the diurnal rhythms of the human eye was investigated. Participants wore an activity monitor on Days 1–7. A set of measures (epochs) encompassing intraocular pressure (IOP), ocular biometry, and retinal imaging were obtained on Day 7 (baseline), followed by eight epochs on Day 8, and one on Day 9 from both eyes of healthy participants (n = 22, 19–25 years). The sleep time of participants (collected via actigraphy) was used as a reference in scheduling epochs. Topical 1 % atropine was instilled in the dominant eye on Day 8, 2 h after habitual wake time, using the fellow eye as control (paired-eye design). Sinusoids with a 24-h period were fitted to the data, and a non-linear mixed-effects model was used to estimate rhythmic statistics. There were no interocular differences in any of the measured parameters at baseline. Comparing pre- versus post-atropine in treated eyes revealed lower IOP, deeper anterior chamber (ACD), decreased crystalline lens thickness and shorter axial length (AL). The same trends were observed when comparing atropine-treated versus fellow control eyes, except for IOP and AL (no differences). Both atropine-treated and fellow control eyes showed significant diurnal variations in all ocular parameters, with atropine-treated eyes revealing larger AL and retinal thickness amplitudes, smaller vitreous chamber depth (VCD) amplitudes, and a significant phase advancement for ACD and VCD. There were no interocular differences in choroidal thickness rhythms. In conclusion, while ocular diurnal rhythms persisted after instillation of 1 % atropine, many rhythmic parameters were altered.</p></div>\",\"PeriodicalId\":23670,\"journal\":{\"name\":\"Vision Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0042698923001657/pdfft?md5=28107cf8ddcd6ea2f92075e0346e3508&pid=1-s2.0-S0042698923001657-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vision Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0042698923001657\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042698923001657","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
The effect of topical 1 % atropine on ocular dimensions and diurnal rhythms of the human eye
The effect of topical 1 % atropine on the diurnal rhythms of the human eye was investigated. Participants wore an activity monitor on Days 1–7. A set of measures (epochs) encompassing intraocular pressure (IOP), ocular biometry, and retinal imaging were obtained on Day 7 (baseline), followed by eight epochs on Day 8, and one on Day 9 from both eyes of healthy participants (n = 22, 19–25 years). The sleep time of participants (collected via actigraphy) was used as a reference in scheduling epochs. Topical 1 % atropine was instilled in the dominant eye on Day 8, 2 h after habitual wake time, using the fellow eye as control (paired-eye design). Sinusoids with a 24-h period were fitted to the data, and a non-linear mixed-effects model was used to estimate rhythmic statistics. There were no interocular differences in any of the measured parameters at baseline. Comparing pre- versus post-atropine in treated eyes revealed lower IOP, deeper anterior chamber (ACD), decreased crystalline lens thickness and shorter axial length (AL). The same trends were observed when comparing atropine-treated versus fellow control eyes, except for IOP and AL (no differences). Both atropine-treated and fellow control eyes showed significant diurnal variations in all ocular parameters, with atropine-treated eyes revealing larger AL and retinal thickness amplitudes, smaller vitreous chamber depth (VCD) amplitudes, and a significant phase advancement for ACD and VCD. There were no interocular differences in choroidal thickness rhythms. In conclusion, while ocular diurnal rhythms persisted after instillation of 1 % atropine, many rhythmic parameters were altered.
期刊介绍:
Vision Research is a journal devoted to the functional aspects of human, vertebrate and invertebrate vision and publishes experimental and observational studies, reviews, and theoretical and computational analyses. Vision Research also publishes clinical studies relevant to normal visual function and basic research relevant to visual dysfunction or its clinical investigation. Functional aspects of vision is interpreted broadly, ranging from molecular and cellular function to perception and behavior. Detailed descriptions are encouraged but enough introductory background should be included for non-specialists. Theoretical and computational papers should give a sense of order to the facts or point to new verifiable observations. Papers dealing with questions in the history of vision science should stress the development of ideas in the field.