{"title":"重新审视静电力对沙尘暴中沙粒扬起的影响","authors":"Huan Zhang","doi":"10.1016/j.elstat.2023.103880","DOIUrl":null,"url":null,"abstract":"<div><p>We derived theoretical formulations for the fluid threshold of conducting and insulating sand particles under an imposed electric field. Our analysis reveals a non-monotonic dependency of the fluid threshold on particle diameter, imposed electric field, and surface charge density. For conducting particles, electrostatic forces lead to a reduction of the fluid threshold by up to 31%. In contrast, for negatively charged insulating particles, electrostatic forces enhance the fluid threshold by up to 76%. Unexpectedly, electrostatic forces either enhance or inhibit the fluid threshold by up to 30%, depending on the imposed electric field and surface charge density.</p></div>","PeriodicalId":54842,"journal":{"name":"Journal of Electrostatics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S030438862300089X/pdfft?md5=9fda0d264e1d3419785bfcbd64977ce2&pid=1-s2.0-S030438862300089X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Revisiting the effects of electrostatic forces on the lifting of sand particles in dust storms\",\"authors\":\"Huan Zhang\",\"doi\":\"10.1016/j.elstat.2023.103880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We derived theoretical formulations for the fluid threshold of conducting and insulating sand particles under an imposed electric field. Our analysis reveals a non-monotonic dependency of the fluid threshold on particle diameter, imposed electric field, and surface charge density. For conducting particles, electrostatic forces lead to a reduction of the fluid threshold by up to 31%. In contrast, for negatively charged insulating particles, electrostatic forces enhance the fluid threshold by up to 76%. Unexpectedly, electrostatic forces either enhance or inhibit the fluid threshold by up to 30%, depending on the imposed electric field and surface charge density.</p></div>\",\"PeriodicalId\":54842,\"journal\":{\"name\":\"Journal of Electrostatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S030438862300089X/pdfft?md5=9fda0d264e1d3419785bfcbd64977ce2&pid=1-s2.0-S030438862300089X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrostatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030438862300089X\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrostatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030438862300089X","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Revisiting the effects of electrostatic forces on the lifting of sand particles in dust storms
We derived theoretical formulations for the fluid threshold of conducting and insulating sand particles under an imposed electric field. Our analysis reveals a non-monotonic dependency of the fluid threshold on particle diameter, imposed electric field, and surface charge density. For conducting particles, electrostatic forces lead to a reduction of the fluid threshold by up to 31%. In contrast, for negatively charged insulating particles, electrostatic forces enhance the fluid threshold by up to 76%. Unexpectedly, electrostatic forces either enhance or inhibit the fluid threshold by up to 30%, depending on the imposed electric field and surface charge density.
期刊介绍:
The Journal of Electrostatics is the leading forum for publishing research findings that advance knowledge in the field of electrostatics. We invite submissions in the following areas:
Electrostatic charge separation processes.
Electrostatic manipulation of particles, droplets, and biological cells.
Electrostatically driven or controlled fluid flow.
Electrostatics in the gas phase.