高阶规定曲率问题的双塔解法

IF 1 3区 数学 Q1 MATHEMATICS
Yuan Gao, Yuxia Guo, Yichen Hu
{"title":"高阶规定曲率问题的双塔解法","authors":"Yuan Gao,&nbsp;Yuxia Guo,&nbsp;Yichen Hu","doi":"10.1007/s10231-023-01404-0","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the following higher-order prescribed curvature problem on <span>\\( {\\mathbb {S}}^N: \\)</span></p><div><div><span>$$\\begin{aligned} D^m {\\tilde{u}}=\\widetilde{K}(y) {\\tilde{u}}^{m^{*}-1} \\quad \\text{ on } \\ {\\mathbb {S}}^N, \\qquad {\\tilde{u}} &gt;0 \\quad {\\quad \\hbox {in } }{\\mathbb {S}}^N. \\end{aligned}$$</span></div></div><p>where <span>\\(\\widetilde{K}(y)&gt;0\\)</span> is a radial function, <span>\\(m^{*}=\\frac{2N}{N-2m}\\)</span>, and <span>\\(D^m\\)</span> is the 2<i>m</i>-order differential operator given by </p><div><div><span>$$\\begin{aligned} D^m=\\prod _{i=1}^m\\left( -\\Delta _g+\\frac{1}{4}(N-2i)(N+2i-2)\\right) , \\end{aligned}$$</span></div></div><p>where <span>\\(g=g_{{\\mathbb {S}}^N}\\)</span> is the Riemannian metric. We prove the existence of infinitely many double-tower type solutions, which are invariant under some non-trivial sub-groups of <i>O</i>(3),  and their energy can be made arbitrarily large.\n</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double-tower solutions for higher-order prescribed curvature problem\",\"authors\":\"Yuan Gao,&nbsp;Yuxia Guo,&nbsp;Yichen Hu\",\"doi\":\"10.1007/s10231-023-01404-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the following higher-order prescribed curvature problem on <span>\\\\( {\\\\mathbb {S}}^N: \\\\)</span></p><div><div><span>$$\\\\begin{aligned} D^m {\\\\tilde{u}}=\\\\widetilde{K}(y) {\\\\tilde{u}}^{m^{*}-1} \\\\quad \\\\text{ on } \\\\ {\\\\mathbb {S}}^N, \\\\qquad {\\\\tilde{u}} &gt;0 \\\\quad {\\\\quad \\\\hbox {in } }{\\\\mathbb {S}}^N. \\\\end{aligned}$$</span></div></div><p>where <span>\\\\(\\\\widetilde{K}(y)&gt;0\\\\)</span> is a radial function, <span>\\\\(m^{*}=\\\\frac{2N}{N-2m}\\\\)</span>, and <span>\\\\(D^m\\\\)</span> is the 2<i>m</i>-order differential operator given by </p><div><div><span>$$\\\\begin{aligned} D^m=\\\\prod _{i=1}^m\\\\left( -\\\\Delta _g+\\\\frac{1}{4}(N-2i)(N+2i-2)\\\\right) , \\\\end{aligned}$$</span></div></div><p>where <span>\\\\(g=g_{{\\\\mathbb {S}}^N}\\\\)</span> is the Riemannian metric. We prove the existence of infinitely many double-tower type solutions, which are invariant under some non-trivial sub-groups of <i>O</i>(3),  and their energy can be made arbitrarily large.\\n</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-023-01404-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-023-01404-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑以下关于( {\mathbb {S}}^N: \)$$begin{aligned}的高阶规定曲率问题D^m {tilde{u}}=\widetilde{K}(y) {tilde{u}}^{m^{*}-1} \quad \text{ on }\ {mathbb {S}}^N, \qquad {tilde{u}} >0 \quad {\quad \hbox {in }}{mathbb {S}}^N.\end{aligned}$$其中 \(widetilde{K}(y)>0\) 是一个径向函数,\(m^{*}=\frac{2N}{N-2m}\),并且 \(D^m\) 是由$$begin{aligned}给出的 2m 阶微分算子。D^m=\prod _{i=1}^m\left( -\Delta _g+\frac{1}{4}(N-2i)(N+2i-2)\right) , \end{aligned}$$其中 \(g=g_{{\mathbb {S}}^N}\) 是黎曼度量。我们证明了无穷多个双塔型解的存在,这些解在 O(3) 的一些非难子群下是不变的,而且它们的能量可以变得任意大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Double-tower solutions for higher-order prescribed curvature problem

We consider the following higher-order prescribed curvature problem on \( {\mathbb {S}}^N: \)

$$\begin{aligned} D^m {\tilde{u}}=\widetilde{K}(y) {\tilde{u}}^{m^{*}-1} \quad \text{ on } \ {\mathbb {S}}^N, \qquad {\tilde{u}} >0 \quad {\quad \hbox {in } }{\mathbb {S}}^N. \end{aligned}$$

where \(\widetilde{K}(y)>0\) is a radial function, \(m^{*}=\frac{2N}{N-2m}\), and \(D^m\) is the 2m-order differential operator given by

$$\begin{aligned} D^m=\prod _{i=1}^m\left( -\Delta _g+\frac{1}{4}(N-2i)(N+2i-2)\right) , \end{aligned}$$

where \(g=g_{{\mathbb {S}}^N}\) is the Riemannian metric. We prove the existence of infinitely many double-tower type solutions, which are invariant under some non-trivial sub-groups of O(3),  and their energy can be made arbitrarily large.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信