通过广义彼得曼因子检测非赫米提系统中的体例外点和边缘例外点

IF 6.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Yue-Yu Zou, Yao Zhou, Li-Mei Chen, Peng Ye
{"title":"通过广义彼得曼因子检测非赫米提系统中的体例外点和边缘例外点","authors":"Yue-Yu Zou,&nbsp;Yao Zhou,&nbsp;Li-Mei Chen,&nbsp;Peng Ye","doi":"10.1007/s11467-023-1337-8","DOIUrl":null,"url":null,"abstract":"<div><p>Non-orthogonality in non-Hermitian quantum systems gives rise to tremendous exotic quantum phenomena, which can be fundamentally traced back to non-unitarity. In this paper, we introduce an interesting quantity (denoted as <i>η</i>) as a new variant of the Petermann factor to directly and efficiently measure non-unitarity and the associated non-Hermitian physics. By tuning the model parameters of underlying non-Hermitian systems, we find that the discontinuity of both <i>η</i> and its first-order derivative (denoted as <i>∂η</i>) pronouncedly captures rich physics that is fundamentally caused by non-unitarity. More concretely, in the 1D non-Hermitian topological systems, two mutually orthogonal edge states that are respectively localized on two boundaries become non-orthogonal in the vicinity of discontinuity of <i>η</i> as a function of the model parameter, which is dubbed “edge state transition”. Through theoretical analysis, we identify that the appearance of edge state transition indicates the existence of exceptional points (EPs) in topological edge states. Regarding the discontinuity of <i>∂η</i>, we investigate a two-level non-Hermitian model and establish a connection between the points of discontinuity of <i>∂η</i> and EPs of bulk states. By studying this connection in more general lattice models, we find that some models have discontinuity of <i>∂η</i>, implying the existence of EPs in bulk states.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detecting bulk and edge exceptional points in non-Hermitian systems through generalized Petermann factors\",\"authors\":\"Yue-Yu Zou,&nbsp;Yao Zhou,&nbsp;Li-Mei Chen,&nbsp;Peng Ye\",\"doi\":\"10.1007/s11467-023-1337-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Non-orthogonality in non-Hermitian quantum systems gives rise to tremendous exotic quantum phenomena, which can be fundamentally traced back to non-unitarity. In this paper, we introduce an interesting quantity (denoted as <i>η</i>) as a new variant of the Petermann factor to directly and efficiently measure non-unitarity and the associated non-Hermitian physics. By tuning the model parameters of underlying non-Hermitian systems, we find that the discontinuity of both <i>η</i> and its first-order derivative (denoted as <i>∂η</i>) pronouncedly captures rich physics that is fundamentally caused by non-unitarity. More concretely, in the 1D non-Hermitian topological systems, two mutually orthogonal edge states that are respectively localized on two boundaries become non-orthogonal in the vicinity of discontinuity of <i>η</i> as a function of the model parameter, which is dubbed “edge state transition”. Through theoretical analysis, we identify that the appearance of edge state transition indicates the existence of exceptional points (EPs) in topological edge states. Regarding the discontinuity of <i>∂η</i>, we investigate a two-level non-Hermitian model and establish a connection between the points of discontinuity of <i>∂η</i> and EPs of bulk states. By studying this connection in more general lattice models, we find that some models have discontinuity of <i>∂η</i>, implying the existence of EPs in bulk states.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":573,\"journal\":{\"name\":\"Frontiers of Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11467-023-1337-8\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11467-023-1337-8","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

非赫米提量子系统中的非正交性产生了巨大的奇异量子现象,而这些现象从根本上可以追溯到非统一性。在本文中,我们引入了一个有趣的量(记为 η)作为彼得曼因子的新变体,以直接有效地测量非单调性和相关的非赫米提物理学。通过调整底层非ermitian 系统的模型参数,我们发现η 及其一阶导数(表示为∂η)的不连续性明显地捕捉到了从根本上由非单一性引起的丰富物理。更具体地说,在一维非赫米提拓扑系统中,分别定位于两条边界上的两个相互正交的边缘态,在η作为模型参数函数的不连续附近变得非正交,这被称为 "边缘态转换"。通过理论分析,我们发现边缘状态转换的出现表明拓扑边缘状态中存在例外点(EPs)。关于η∂的不连续性,我们研究了一个两级非赫米提模型,并建立了η∂的不连续性点与体态例外点之间的联系。通过在更一般的晶格模型中研究这种联系,我们发现某些模型具有∂η的不连续性,这意味着体态中存在EP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Detecting bulk and edge exceptional points in non-Hermitian systems through generalized Petermann factors

Detecting bulk and edge exceptional points in non-Hermitian systems through generalized Petermann factors

Non-orthogonality in non-Hermitian quantum systems gives rise to tremendous exotic quantum phenomena, which can be fundamentally traced back to non-unitarity. In this paper, we introduce an interesting quantity (denoted as η) as a new variant of the Petermann factor to directly and efficiently measure non-unitarity and the associated non-Hermitian physics. By tuning the model parameters of underlying non-Hermitian systems, we find that the discontinuity of both η and its first-order derivative (denoted as ∂η) pronouncedly captures rich physics that is fundamentally caused by non-unitarity. More concretely, in the 1D non-Hermitian topological systems, two mutually orthogonal edge states that are respectively localized on two boundaries become non-orthogonal in the vicinity of discontinuity of η as a function of the model parameter, which is dubbed “edge state transition”. Through theoretical analysis, we identify that the appearance of edge state transition indicates the existence of exceptional points (EPs) in topological edge states. Regarding the discontinuity of ∂η, we investigate a two-level non-Hermitian model and establish a connection between the points of discontinuity of ∂η and EPs of bulk states. By studying this connection in more general lattice models, we find that some models have discontinuity of ∂η, implying the existence of EPs in bulk states.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Physics
Frontiers of Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
9.20
自引率
9.30%
发文量
898
审稿时长
6-12 weeks
期刊介绍: Frontiers of Physics is an international peer-reviewed journal dedicated to showcasing the latest advancements and significant progress in various research areas within the field of physics. The journal's scope is broad, covering a range of topics that include: Quantum computation and quantum information Atomic, molecular, and optical physics Condensed matter physics, material sciences, and interdisciplinary research Particle, nuclear physics, astrophysics, and cosmology The journal's mission is to highlight frontier achievements, hot topics, and cross-disciplinary points in physics, facilitating communication and idea exchange among physicists both in China and internationally. It serves as a platform for researchers to share their findings and insights, fostering collaboration and innovation across different areas of physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信