Rutger Campbell, Katie Clinch, Marc Distel, J. Pascal Gollin, Kevin Hendrey, Robert Hickingbotham, Tony Huynh, Freddie Illingworth, Youri Tamitegama, Jane Tan, David R. Wood
{"title":"有界树宽图类的乘积结构","authors":"Rutger Campbell, Katie Clinch, Marc Distel, J. Pascal Gollin, Kevin Hendrey, Robert Hickingbotham, Tony Huynh, Freddie Illingworth, Youri Tamitegama, Jane Tan, David R. Wood","doi":"10.1017/s0963548323000457","DOIUrl":null,"url":null,"abstract":"<p>We show that many graphs with bounded treewidth can be described as subgraphs of the strong product of a graph with smaller treewidth and a bounded-size complete graph. To this end, define the <span>underlying treewidth</span> of a graph class <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal{G}$</span></span></img></span></span> to be the minimum non-negative integer <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$c$</span></span></img></span></span> such that, for some function <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$f$</span></span></img></span></span>, for every graph <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$G \\in \\mathcal{G}$</span></span></img></span></span> there is a graph <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$H$</span></span></img></span></span> with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\textrm{tw}(H) \\leqslant c$</span></span></img></span></span> such that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$G$</span></span></img></span></span> is isomorphic to a subgraph of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$H \\boxtimes K_{f(\\textrm{tw}(G))}$</span></span></img></span></span>. We introduce disjointed coverings of graphs and show they determine the underlying treewidth of any graph class. Using this result, we prove that the class of planar graphs has underlying treewidth <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$3$</span></span></img></span></span>; the class of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$K_{s,t}$</span></span></img></span></span>-minor-free graphs has underlying treewidth <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$s$</span></span></img></span></span> (for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline12.png\"><span data-mathjax-type=\"texmath\"><span>$t \\geqslant \\max \\{s,3\\}$</span></span></img></span></span>); and the class of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline13.png\"><span data-mathjax-type=\"texmath\"><span>$K_t$</span></span></img></span></span>-minor-free graphs has underlying treewidth <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline14.png\"><span data-mathjax-type=\"texmath\"><span>$t-2$</span></span></img></span></span>. In general, we prove that a monotone class has bounded underlying treewidth if and only if it excludes some fixed topological minor. We also study the underlying treewidth of graph classes defined by an excluded subgraph or excluded induced subgraph. We show that the class of graphs with no <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline15.png\"><span data-mathjax-type=\"texmath\"><span>$H$</span></span></img></span></span> subgraph has bounded underlying treewidth if and only if every component of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline16.png\"><span data-mathjax-type=\"texmath\"><span>$H$</span></span></img></span></span> is a subdivided star, and that the class of graphs with no induced <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline17.png\"><span data-mathjax-type=\"texmath\"><span>$H$</span></span></img></span></span> subgraph has bounded underlying treewidth if and only if every component of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline18.png\"><span data-mathjax-type=\"texmath\"><span>$H$</span></span></img></span></span> is a star.</p>","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Product structure of graph classes with bounded treewidth\",\"authors\":\"Rutger Campbell, Katie Clinch, Marc Distel, J. Pascal Gollin, Kevin Hendrey, Robert Hickingbotham, Tony Huynh, Freddie Illingworth, Youri Tamitegama, Jane Tan, David R. Wood\",\"doi\":\"10.1017/s0963548323000457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that many graphs with bounded treewidth can be described as subgraphs of the strong product of a graph with smaller treewidth and a bounded-size complete graph. To this end, define the <span>underlying treewidth</span> of a graph class <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathcal{G}$</span></span></img></span></span> to be the minimum non-negative integer <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$c$</span></span></img></span></span> such that, for some function <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$f$</span></span></img></span></span>, for every graph <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$G \\\\in \\\\mathcal{G}$</span></span></img></span></span> there is a graph <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$H$</span></span></img></span></span> with <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\textrm{tw}(H) \\\\leqslant c$</span></span></img></span></span> such that <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$G$</span></span></img></span></span> is isomorphic to a subgraph of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$H \\\\boxtimes K_{f(\\\\textrm{tw}(G))}$</span></span></img></span></span>. We introduce disjointed coverings of graphs and show they determine the underlying treewidth of any graph class. Using this result, we prove that the class of planar graphs has underlying treewidth <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$3$</span></span></img></span></span>; the class of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$K_{s,t}$</span></span></img></span></span>-minor-free graphs has underlying treewidth <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline11.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$s$</span></span></img></span></span> (for <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline12.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$t \\\\geqslant \\\\max \\\\{s,3\\\\}$</span></span></img></span></span>); and the class of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline13.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$K_t$</span></span></img></span></span>-minor-free graphs has underlying treewidth <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline14.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$t-2$</span></span></img></span></span>. In general, we prove that a monotone class has bounded underlying treewidth if and only if it excludes some fixed topological minor. We also study the underlying treewidth of graph classes defined by an excluded subgraph or excluded induced subgraph. We show that the class of graphs with no <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline15.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$H$</span></span></img></span></span> subgraph has bounded underlying treewidth if and only if every component of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline16.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$H$</span></span></img></span></span> is a subdivided star, and that the class of graphs with no induced <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline17.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$H$</span></span></img></span></span> subgraph has bounded underlying treewidth if and only if every component of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231207050429486-0539:S0963548323000457:S0963548323000457_inline18.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$H$</span></span></img></span></span> is a star.</p>\",\"PeriodicalId\":10503,\"journal\":{\"name\":\"Combinatorics, Probability and Computing\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0963548323000457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548323000457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Product structure of graph classes with bounded treewidth
We show that many graphs with bounded treewidth can be described as subgraphs of the strong product of a graph with smaller treewidth and a bounded-size complete graph. To this end, define the underlying treewidth of a graph class $\mathcal{G}$ to be the minimum non-negative integer $c$ such that, for some function $f$, for every graph $G \in \mathcal{G}$ there is a graph $H$ with $\textrm{tw}(H) \leqslant c$ such that $G$ is isomorphic to a subgraph of $H \boxtimes K_{f(\textrm{tw}(G))}$. We introduce disjointed coverings of graphs and show they determine the underlying treewidth of any graph class. Using this result, we prove that the class of planar graphs has underlying treewidth $3$; the class of $K_{s,t}$-minor-free graphs has underlying treewidth $s$ (for $t \geqslant \max \{s,3\}$); and the class of $K_t$-minor-free graphs has underlying treewidth $t-2$. In general, we prove that a monotone class has bounded underlying treewidth if and only if it excludes some fixed topological minor. We also study the underlying treewidth of graph classes defined by an excluded subgraph or excluded induced subgraph. We show that the class of graphs with no $H$ subgraph has bounded underlying treewidth if and only if every component of $H$ is a subdivided star, and that the class of graphs with no induced $H$ subgraph has bounded underlying treewidth if and only if every component of $H$ is a star.