关于匹配数有界的图兰问题

Pub Date : 2023-12-06 DOI:10.1002/jgt.23067
Dániel Gerbner
{"title":"关于匹配数有界的图兰问题","authors":"Dániel Gerbner","doi":"10.1002/jgt.23067","DOIUrl":null,"url":null,"abstract":"<p>Very recently, Alon and Frankl initiated the study of the maximum number of edges in <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>-vertex <math>\n <semantics>\n <mrow>\n <mi>F</mi>\n </mrow>\n <annotation> $F$</annotation>\n </semantics></math>-free graphs with matching number at most <math>\n <semantics>\n <mrow>\n <mi>s</mi>\n </mrow>\n <annotation> $s$</annotation>\n </semantics></math>. For fixed <math>\n <semantics>\n <mrow>\n <mi>F</mi>\n </mrow>\n <annotation> $F$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mi>s</mi>\n </mrow>\n <annotation> $s$</annotation>\n </semantics></math>, we determine this number apart from a constant additive term. We also obtain several exact results.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Turán problems with bounded matching number\",\"authors\":\"Dániel Gerbner\",\"doi\":\"10.1002/jgt.23067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Very recently, Alon and Frankl initiated the study of the maximum number of edges in <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math>-vertex <math>\\n <semantics>\\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n <annotation> $F$</annotation>\\n </semantics></math>-free graphs with matching number at most <math>\\n <semantics>\\n <mrow>\\n <mi>s</mi>\\n </mrow>\\n <annotation> $s$</annotation>\\n </semantics></math>. For fixed <math>\\n <semantics>\\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n <annotation> $F$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <mi>s</mi>\\n </mrow>\\n <annotation> $s$</annotation>\\n </semantics></math>, we determine this number apart from a constant additive term. We also obtain several exact results.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,阿隆和弗兰克尔开始研究匹配数最多为 s$s$ 的 n$n$ 无顶点 F$F$ 图中的最大边数。对于固定的 F$F$ 和 s$s$,我们确定了除常数加法项之外的这一数目。我们还得到了几个精确结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On Turán problems with bounded matching number

Very recently, Alon and Frankl initiated the study of the maximum number of edges in n $n$ -vertex F $F$ -free graphs with matching number at most s $s$ . For fixed F $F$ and s $s$ , we determine this number apart from a constant additive term. We also obtain several exact results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信